Question 1: (Integration by Parts) Determine $\int \frac{\ln(x)}{\sqrt{x}} dx$

[5]

Question 2: (Integration by Parts) Determine $\int_0^1 \cos^{-1}(x) dx$

Question 3: (Trigonometric Substitution) Determine $\int \frac{1}{x^2\sqrt{16-x^2}} dx$

Question 4: (Partial Fractions) Determine $\int \frac{x-4}{x^2-5x+6} dx$

Question 5: Determine
$$\int \frac{4x^2 + 4x - 1}{4x^2 - 4x + 3} dx$$

[5]

Question 6: Use T_4 , the Trapezoid Rule on four subintervals to approximate $\int_1^5 \frac{\cos(\pi x)}{x} dx$. Express your final answer as a single simplified fraction.

[5]

Question 7: Determine whether $\int_0^\infty x^2 e^{-x^3} dx$ converges or diverges. If it converges give the value, if it diverges then say so. Make proper use of any required limits and use proper notation.

Question 8: Determine if the improper integral $\int_0^5 \frac{x}{x-2} dx$ converges or diverges. If it converges give the value, if it diverges then say so. Make proper use of any required limits and use proper notation.

[5]

Question 9: Determine the area of the region in the first quadrant that is bounded by the curves y = 1/x, y = x and $y = x^2/8$.