
MATH 122: Calculus II

Section 8.7 Taylor and Maclaurin Series



8.7 Taylor and Maclaurin Series

In 8.6 we obtained power series representations for certain special

functions.

In 8.7 we look at the more general problem, namely, which functions

have power series representations, and how can we find them?

8.7 Taylor and Maclaurin Series

Suppose that the function f can be represented by a power series:

f (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + c4(x − a)4 + · · ·

for |x − a| < R.

Then for |x − a| < R

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + 4c4(x − a)3 + 5c5(x − a)4 + · · ·

f ′′(x) = 2c2 + 2 · 3c3(x − a) + 3 · 4c4(x − a)2 + 4 · 5c5(x − a)3 + · · ·

f (3)(x) = 2 · 3c3 + 2 · 3 · 4c4(x − a) + 3 · 4 · 5c5(x − a)2 + · · ·

f (4)(x) = 2 · 3 · 4c4 + 2 · 3 · 4 · 5c5(x − a) + · · ·

This leads to

f (a) = c0

f ′(a) = c1

f ′′(a) = 2c2 = 2!c2

f (3)(a) = 2 · 3c3 = 3!c3

f (4)(a) = 2 · 3 · 4c4 = 4!c4



8.7 Taylor and Maclaurin Series

In general: f (n)(a) = 2 · 3 · 4 · · · ncn = n!cn. Solving for cn we obtain

cn =
f (n)(a)

n!

Theorem 5

If f has a power series representation at a, that is if

f (x) =

∞
∑

n=0

cn(x − a)n |x − a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

8.7 Taylor and Maclaurin Series

If f has a power series representation at a, it must be of the following

form:

f (x) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · ·

This is called the Taylor series of f at a (or about a or centered at a).



8.7 Taylor and Maclaurin Series

For the special case a = 0 we have that

f (x) =
∞
∑

n=0

f (n)(0)

n!
xn

f (x) = f (0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·

This called the Maclaurin series of f .

8.7 Taylor and Maclaurin Series

Example 1

Find the Maclaurin series of f (x) = cos(x) and its radius of

convergence.

The Maclaurin series for f (x) is

∞
∑

n=0

f (n)(0)

n!
xn.

f (x) = cos(x) f (0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f (3)(x) = sin(x) f (3)(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1



8.7 Taylor and Maclaurin Series

Example 1 (continued)

f (0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

1!
x4 + · · ·

= 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · ·

=
∞
∑

n=0

(−1)n x2n

(2n)!

To determine the radius of convergence, we will use the Ratio Test.

We have that

an = (−1)n x2n

(2n)!
and an+1 = (−1)n+1 x2n+2

(2n + 2)!

8.7 Taylor and Maclaurin Series

Example 1 (continued)
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∣

∣
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∣

∣

∣

∣
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∣

∣

∣

= lim
n→∞

x2

(2n + 2)(2n + 1)
= 0

Notice that the limit above is always zero regardless of the value of x.

That is, we always obtain a limit of zero, which according to the Ratio

Test (since this limit of zero is less than one), says that the radius of

convergence is R = ∞. That is, the interval of convergence is

(−∞,∞).



8.7 Taylor and Maclaurin Series

Example 1 says that if cos(x) has a power series representation at

a = 0, then

cos(x) =
∞
∑

n=0

(−1)n x2n

(2n)!

The fact that the series on the right converges for all values of x, does

not mean that it converges to cos(x), necessarily.

There are functions that are not equal to their Taylor series.

8.7 Taylor and Maclaurin Series

Think of the Taylor series as something that has its own existence.

Sometimes the function and its Taylor series will equal each other, but

there’s no guarantee that it will always happen.

How can we determine whether a function does have a power series

representation?

To show that a function is actually equal to its Taylor series we have

to examine the partial sums in the Taylor series and show that they

converge to the function we have in mind.



8.7 Taylor and Maclaurin Series

The partial sums in the case of Taylor series are

Tn(x) =

n
∑

i=0

f (i)(a)

i!
(x − a)i

Tn(a) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 + · · ·+

f (n)(a)

n!
(x − a)n

This is called the n-th degree Taylor polynomial of f at a.

8.7 Taylor and Maclaurin Series

Let f (x) be the function we are trying to represent by its Taylor series.

Define the remainder of the Taylor series by Rn(x) = f (x)− Tn(x).

This means that

f (x) = Tn(x) + Rn(x).

If we can show that lim
n→∞

Rn(x) → 0, it will then follow that

f (x) = lim
n→∞

Tn(x),

meaning that the partial sums will converge to f (x).



8.7 Taylor and Maclaurin Series

To show that Rn(x) → 0 as n → ∞, we often use the following result,

called Taylor’s Formula.

Taylor’s Formula

If f has n + 1 derivatives in an interval I that contains the number a,

then for x in I there is a number z strictly between x and a such that

the remainder in the Taylor series can be expressed as

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − a)n+1.

The remainder term is very similar to the terms in the Taylor series.

The only difference is that f (n+1) is evaluated at z instead of a.

8.7 Taylor and Maclaurin Series

In the case of f (x) = cos(x), f (n+1)(z) = ± cos(z) or ± sin(z). This

would mean that |f (n+1)(z)| ≤ 1. For the Maclaurin series of cos(x)
where a = 0,

0 ≤ |Rn(x)| =

∣

∣

∣

∣

∣

f (n+1)(z)

(n + 1)!
(x − 0)n+1

∣

∣

∣

∣

∣

≤
|xn+1|

(n + 1)!
.

As n → ∞,
|xn+1|

(n + 1)!
→ 0 for all x.

Therefore, |Rn(x)| → 0, so that Rn(x) → 0 as n → ∞.



8.7 Taylor and Maclaurin Series

This means that cos(x) does equal its Taylor series:

cos(x) =
∞
∑

n=0

(−1)n x2n

(2n)!

= 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

for every real number x

8.7 Taylor and Maclaurin Series

Example 2

Find the Maclaurin series for sin(x).

In this case we could compute all of the derivatives of sin(x) and

evaluate them at a = 0 to build the Maclaurin series from scratch, but

there is an easier way.

We start with the series for cos(x) instead

cos(x) =
∞
∑

n=0

(−1)n x2n

(2n)!

and differentiate both sides. Here we will be using Theorem 2 from

8.6 that says that we can differentiate the power series as if it is a

polynomial, and the interval of convergence will remain the same.



8.7 Taylor and Maclaurin Series

Example 2 (continued)

Recall that
d

dx
[cos(x)] = − sin(x), or that −

d

dx
[cos(x)] = sin(x).

sin(x) = −
d

dx
[cos(x)]

= −
d

dx

[

∞
∑

n=0

(−1)n x2n

(2n)!

]

= −

∞
∑

n=0

d

dx

[

(−1)n x2n

(2n)!

]

= −

∞
∑

n=1

(−1)n x2n−1

(2n − 1)!
=

∞
∑

n=1

(−1)n+1 x2n−1

(2n − 1)!

8.7 Taylor and Maclaurin Series

Example 2 (continued)

Notice that

∞
∑

n=1

(−1)n+1 x2n−1

(2n − 1)!
=

∞
∑

n=0

(−1)n x2n+1

(2n + 1)!

Since the Maclaurin series for cos(x) converges for all x, Theorem 2

in 8.6, says that the differentiated series for sin(x) also converges for

all x. Therefore,

sin(x) =

∞
∑

n=0

(−1)n x2n+1

(2n + 1)
!

= x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

for all x



8.7 Taylor and Maclaurin Series

The power series we obtained for sin(x) in Example 2 (in an indirect

manner) will in fact equal the Taylor series (Maclaurin series) for

sin(x) that can be obtained using direct methods.

The reason for this is Theorem 5 in this section. It states that no

matter how a power series representation, f (x) =
∑

cn(x − a)n, is

obtained, it is always the case that

cn =
f (n)(a)

n!
.

That is, the coefficients are unique.

8.7 Taylor and Maclaurin Series

In Example 1 on page 477 of the textbook it shown that the Maclaurin

series for f (x) = ex is

∞
∑

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · ·

It is also shown that the radius of convergence of this series is R = ∞.



8.7 Taylor and Maclaurin Series

In Example 2 on page 479 it is shown that ex is actually equal to its

Maclaurin series. This is done by showing that the remainder Rn(x)
goes to zero as n → ∞. This means that

ex =

∞
∑

n=0

xn

n!

= 1 + x +
x2

2!
+

x3

3!
+ · · ·

for all x

Setting x = 1 in the series above we obtain

e =
∞
∑

n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·

8.7 Taylor and Maclaurin Series

Example 3

Using the definition of Taylor series, find the Taylor series for

f (x) = cos(x) centered at a = π/2.

The definition of the Taylor series for f (x) at a = π/2 is

∞
∑

n=0

f (n)(π/2)

n!
(x − π/2)n.

f (x) = cos(x) f (π/2) = 0

f ′(x) = − sin(x) f ′(π/2) = −1

f ′′(x) = − cos(x) f ′′(π/2) = 0

f (3)(x) = sin(x) f (3)(π/2) = 1

f (4)(x) = cos(x) f (4)(π/2) = 0



8.7 Taylor and Maclaurin Series

Example 3 (continued)

f (π/2) +
f ′(π/2)

1!
(x − π/2) +

f ′′(π/2)

2!
(x − π/2)2+

f (3)(π/2)

3!
(x − π/2)3 +

f (4)(π/2)

1!
(x − π/2)4 + · · ·

= −(x − π/2) +
1

3!
(x − π/2)3 −

1

5!
(x − π/2)5 + · · ·

=
∞
∑

n=0

(−1)n+1

(2n + 1)!
(x − π/2)2n+1

8.7 Taylor and Maclaurin Series

The Maclaurin series (a = 0) for cos(x) in Example 1 can be used to

approximate cos(x) for values of x close to a = 0.

The Taylor series for cos(x) centered at a = π/2 in Example 3 can be

used to approximate cos(x) for values of x close to a = π/2.

We will say more about this in the next section.



8.7 Taylor and Maclaurin Series

Example 4

Use the Maclaurin series for cos(x) to obtain the Maclaurin series for

x cos(2x).

The Maclaurin series for cos(x) is

cos(x) =

∞
∑

n=0

(−1)n x2n

(2n)!

Substituting 2x for x above gives

cos(2x) =
∞
∑

n=0

(−1)n (2x)2n

(2n)!
=

∞
∑

n=0

(−1)n22n

(2n)!
x2n

The indirect method of obtaining the power series for cos(2x)
produces the same series as the direct method using the definition of

Taylor series. Theorem 5 guarantees that the coefficients are unique.

8.7 Taylor and Maclaurin Series

Example 4 (continued)

Multiplying this series by x gives the Maclaurin series for x cos(2x):

x cos(2x) = x

∞
∑

n=0

(−1)n22n

(2n)!
x2n =

∞
∑

n=0

(−1)n22n

(2n)!
x2n+1

Theorem 5, again, guarantees that this will be the series for x cos(x).

This series converges for all x since the original series converges for

all x.



8.7 Taylor and Maclaurin Series

Listed on the next slide are some important Maclaurin series together

with the radius of convergence of each one.

The series for ln(1 + x) is derived in Example 6 on page 472.

8.7 Taylor and Maclaurin Series

1

1 − x
=

∞
∑

n=0

x
n = 1 + x + x

2 + x
3 + · · · R = 1

e
x =

∞
∑

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · R = ∞

sin x =

∞
∑

n=0

(−1)n x2n+1

(2n + 1)!
= x −

x3

3!
+

x5

5!
−

x7

7!
+ · · · R = ∞

cos x =

∞
∑

n=0

(−1)n x2n

(2n)!
= 1 −

x2

2!
+

x4

4!
−

x6

6!
+ · · · R = ∞

tan
−1

x =

∞
∑

n=0

(−1)n x2n+1

(2n + 1)
= x −

x3

3
+

x5

5
−

x7

7
+ · · · R = 1

ln(1 + x) =

∞
∑

n=1

(−1)n−1 xn

n
= x −

x2

2
+

x3

3
−

x4

4
+ · · · R = 1
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Example 5

Evaluate

∫

e−x2

dx as an infinite series.

Recall that e−x2

cannot be integrated by any of our techniques since it

does not have an elementary antiderivative. This example illustrates

one of the main uses of Taylor series: express e−x2

as a series and

integrate it term-by-term.

We obtain a series representation for e−x2

by substituting −x2 for x in

the Maclaurin series for ex:

e−x2

=

∞
∑

n=0

(−x2)n

n!
=

∞
∑

n=0

(−1)n x2n

n!
= 1 −

x2

1!
+

x4

2!
−

x6

3!
+ · · ·

8.7 Taylor and Maclaurin Series

Example 5 (continued)

Integrating term-by-term we get

∫

e
−x2

dx =

∫
(

1 −
x2

1!
+

x4

2!
−

x6

3!
+ · · ·+ (−1)n x2n

n!
+ · · ·

)

dx

= C + x −
x3

3 · 1!
+

x5

5 · 2!
−

x7

7 · 3!
+ · · ·+ (−1)n x2n+1

(2n + 1)n!
+ · · ·

= C +

∞
∑

n=0

(−1)n x2n+1

(2n + 1)n!

This series converges for all x since the original series converges for

all x.
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Example 6

Use series to evaluate the limit lim
x→0

1 − cos(x)

1 + x − ex
.

lim
x→0

1 − cos(x)

1 + x − ex
= lim

x→0

1 −

(

1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

)

1 + x −

(

1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

)

= lim
x→0

x2

2!
−

x4

4!
+

x6

6!
− · · ·

−
x2

2!
−

x3

3!
−

x4

4!
− · · ·

= lim
x→0

1

2!
−

x2

4!
+

x4

6!
− · · ·

−
1

2!
−

x

3!
−

x2

4!
− · · ·

=

1

2
− 0

−
1

2
− 0

= −1

8.7 Taylor and Maclaurin Series

Convergent power series behave like polynomials: they can be added,

subtracted, multiplied and divided just like we would do with ordinary

polynomials.
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Example 7

Find the first four nonzero terms in the Maclaurin series for
ex

1 − x
.

Since
ex

1 − x
= ex

(

1

1 − x

)

, we multiply the two corresponding

Maclaurin series.

ex

(

1

1 − x

)

=

(

1 + x +
x2

2!
+

x3

3!
+ · · ·

)

(

1 + x + x2 + x3 + · · ·
)

8.7 Taylor and Maclaurin Series

Example 7

e
x

(

1

1 − x

)

=

(

1 + x +
x2

2!
+

x3

3!
+ · · ·

)

(

1 + x + x
2 + x

3 + · · ·
)

= 1 ·
(

1 + x + x
2 + x

3 + · · ·
)

+ x ·
(

1 + x + x
2 + x

3 + · · ·
)

+
x2

2
·
(

1 + x + x
2 + x

3 + · · ·
)

+
x3

6
·
(

1 + x + x
2 + x

3 + · · ·
)

+ · · ·

= 1 + 2x +

(

x
2 + x

2 +
x2

2

)

+

(

x
3 + x

3 +
x3

2
+

x3

6

)

+ · · ·

= 1 + 2x +
5

2
x

2 +
16

6
x

3 + · · ·



8.7 Taylor and Maclaurin Series

For an example involving the division of two Maclaurin series, see

Example 11 on page 485.

It uses a process similar to long division.


