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Section 8.6 Representing Functions as Power
Series



3.6 Representing Functions as Power Series

This section deals with representing certain functions as power series
either by starting with a geometric series and manipulating it or by
differentiating or integrating a known series.

The reason for doing this 1s that it provides us with a way of
integrating functions that don’t have elementary antiderivatives, for
solving certain differential equations, or for approximating functions
by polynomials.



3.6 Representing Functions as Power Series

Consider the series

@)
Zx”:1+x—|—x2+x3—|—---
n=0

It 1s a geometric series with a = 1 and r = x. We know that 1t will
converge if |r| = |x| < 1. In fact, it will converge to

Therefore

1
l_x—l—i—x+x + x° Zx provided that |x| < 1.




3.6 Representing Functions as Power Series

It 1s important to realize what we mean when we say that

1
l_x—1—|—x+x + X Zx provided that |x| < 1.

If |x| < 1, then the function on the left and the power series on the
right produce the exact same result.

If |x| > 1, we may still be able to compute with the function on the
left (except when x = 1), but the power series diverges. For these
values of x, the two sides of the equation give different results.



3.6 Representing Functions as Power Series

Example 1
Find a power series representation of f(x) = 3 and state the
— X
interval of convergence.
We know that
l_x—l—l—x+x + X Zx provided that |x| < 1.

Replace x by x? in the equation above:

1
1 —x3

= 14+ +@)+ @)+

= 14X+ Zx3”



3.6 Representing Functions as Power Series

Example 1 (continued)

1
1 —x3

— 1404+ Zx3”

The right-hand side is a geometric series with » = x>. It will converge
when |x?| < 1, which is that same as —1 < x> < 1, meaning that
-1 <x <1

The radius of convergence is R = 1, and the interval of convergence is

(—1,1).



3.6 Representing Functions as Power Series

Example 2
Find a power series representation for g(x) = 3 and state the
X
interval of convergence.
. 1 .
We want to use the series for " again.
— X

. 13 : 29 1

Before we can use it, we need to make g(x) “look more like " :
— X

1 | 1

S0 ()

This shows that to find the series for g(x) we multiply the series for
1/(1 — x) by 1/3 and we substitute (—x/3) for x in the series for

1/(1 —x).




3.6 Representing Functions as Power Series

Example 2 (continued)

Therefore

This series converges when | — x/3| < 1, which is the same as |x| < 3.

The radius of convergence is R = 3 and the interval of convergence 1s
(_37 3)



3.6 Representing Functions as Power Series

Example 2 (continued)

1
Using the power series representation for g(x) = 3 find a power
' tation for /(x) * )
series representation X) = :
P x+3

We multiply the series just obtained by x to produce the series for
h(x):

—1

00 00 o0 (—l)n )
Z n—l—l Z 3n—|—1 z_:l 3n x

h(x) =

The interval of convergence is the same as before: (—3, 3).



3.6 Representing Functions as Power Series

Theorem 2: Differentiation and Integration of Power Series

If the power series »  ¢,(x — a)" has a radius of convergence R > 0, then the
function f defined by

fxX)=co+cilx—a)+clx—a)+-- :ch(x—a)”

is differentiable (and therefore continuous) on (¢ — R, a + R).

Moreover
(1) f/(x) — (] +2C2(X—a) _|_3C3(x_a)2 4+ = chn(x_a)n—l
n=1
— )2 N3
o /f(X)dx:C_|_C0(x_a)_|_cl(x 261) ‘|‘Cz(x 361) + .=

oo a)n—l—l

(x —
C—|—nz:%cn n-+1

The radii of convergence of the power series in (i) and (ii) are both R.



3.6 Representing Functions as Power Series

Notice that in (11) above we did the following:
/codx = cox + C; = co(x — a) + C,

where C = C; + cga. This 1s done so that all of the terms 1n (i1) have
the same form.

Theorem 2 says that we can differentiate and integrate a power series
by differentiating and integrating each term individually. In this
regard, power series behave like polynomials.



3.6 Representing Functions as Power Series

Note 1
Equations (1) and (i1) can be rewritten as
d | i = d i
4 ngcnoc@ } -3 oty

. /[ch(xa)”} dx:;/cn(x—a)”dx

n=0

These are true provided we are dealing with power series. They may
not hold for other types of series.



3.6 Representing Functions as Power Series

Note 2

Theorem 2 states that the radius of convergence stays the same when
a power series 1s differentiated or integrated. This does not mean that
the interval of convergence remains the same.

For instance the original series for f(x) might converge at an endpoint,
but the differentiated series may fail to converge at this same endpoint.



3.6 Representing Functions as Power Series

Example 3

Find a power series representation for f(x) = 5 and state the

interval of convergence.

1

We focus first on finding a power series representation for (x_2)2°
x P

Once we have that, we will multiply it by x°.

Notice that

i [xiz] T [x_—lzl o

This says that we should find a power series representation for >
x —_
1

(x —2)%

and then differentiate it term-by-term to obtain a series for



3.6 Representing Functions as Power Series

Example 3 (continued)

We want to use the series for 1/(1 — x) to obtain a series for
—1/(x —2) = 1/(2 — x). Notice that

Therefore, we replace x by x/2 in the series for 1/(1 — x) and also
multiply it by 1/2:

1 1 & = x"
2—x:2(1_f)‘iz(> "2
y = n

This series converges when |x/2| < 1, thatis x| < 2,0or =2 < x < 2,



3.6 Representing Functions as Power Series

Example 3 (continued)

1 = X"
7 = 2
n=0
Compute the derivative on both sides:

d [ 1 d |~ x"
dx[2x]£[22n+l}°

n=0

This leads to:

1 > nxt !
(x—2)2 o Z o+l -

n=1

This series converges on the same interval as the series for 1/(2 — x),
namely, (—2,2).



3.6 Representing Functions as Power Series

Example 3 (continued)

3
To obtain the series representation for ( A 2 multiply the last
x R
series by x°.
3 > n+2 e n
X R 3 nx""e (n—2)x
(x_2)2_x( _x22n—|—1 —2:1 n+l1 _223 mn—1
n=— n=—

The interval of convergence is (—2,2).



3.6 Representing Functions as Power Series

Example 4
Find a power series representation for f(x) = In(5 — x) and its radius
of convergence.

—1
Notice that f'(x) = ——. Integrating both sides of this equation
gives

/ f1(x) dx = f(x) = / 5__1x dx.

We, therefore, need a power series representation for —1/(5 — x) that
we will integrate term-by-term to obtain the desired series.




3.6 Representing Functions as Power Series

Example 4 (continued)

To obtain the series for —1/(5 — x), replace x by x/5 in the series for
1/(1 — x), and also multiply it by —1/5:

1 —1 l o= /X\" = x"
S—x_S(l_f) __52(5) _Z_Sn—H'
5 n=0 n=0

This series converges for |x/5| < 1, which is the same as |x| < 5, or
—5 < x < 5. The radius of convergence is R = 5.

Integrating term-by-term:

1n(5x)/51xdx/<§: 5+1> dx—Z/(

n=0

)



3.6 Representing Functions as Power Series

Example 4 (continued)

To find C, set x = O:

On—i—l
In(5 - 0) = C+Z 5 = C




3.6 Representing Functions as Power Series

Example 4 (continued)

Therefore,
111(5 - x) — —|_ Z 5n+1
n=0
2 3 4
zln(S)—f—x X X
5 2.52 3.5 4.54

The radius of convergence is the same as for the original series:
R = 5. The interval of convergence is again (—5,5).



3.6 Representing Functions as Power Series

Example 5

5 :
Evaluate / TR dt as a power series.

We use a familiar strategy: obtain a power series for 1/(1 — %) using
the power series for 1/(1 — x), and then multiply by :

{ 1 o oo
_ _ 8\n __ 8n—+1
1_t8_t<1_t8>_tz(t )n_ztn '
n=>0 n—=>0

This can be integrated term-by-term to obtain the desired result.



3.6 Representing Functions as Power Series

Example 5 (continued)

[ o - 8n+1
/I—ISdt = /(Zt )a’t
n=0
— (/ t81’l+1 dt)

n=0

B C+n2:%8n—|—2

1
1 — 18
when —1 <t < 1 (radius R = 1).

The geometric series for converges when [f°| < 1, that is,

The series for / dt also convergeson —1 <t < 1.

1 —18



3.6 Representing Functions as Power Series

Example 6

Find a power series representation for f(x) = tan™!(x).

1
1 + x?2

1
tan” ! (x) = / " dx.

Note that f(x) = . Therefore

We, therefore, need a power series for 1/(1 + x?). This can be
obtained by substituting —x? for x in the power series for 1/(1 — x):

0. @) o

1 1
1 + x2 - 1 — (—x2) — Z(—xz)” — Z(—l)nxzn.




3.6 Representing Functions as Power Series

Example 6 (continued)

tan” ! (x)

0 x2n—|—1
. 1\
B C+n§_%( b 2n + 1




3.6 Representing Functions as Power Series

Example 6 (continued)

To find C, set x = 0. This leads to C = tan~!(0) = 0. Therefore

3 5 7 o0 2n-+1
1 X X L X
t : —_— — — — — e o o : _1
an_ (x) = x 3+5 7—|— ;( )2n+1

The series for 1/(1 4 x?) converges when | — x?| < 1 which is the
same as —1 <x < 1.

Therefore, the series for tan~!(x) also converges when —1 < x < 1.
In addition, it can be shown that it converges when x = £1 (much
harder to do).

If we substitute x = 1 into the series above we get:

» T 11 1
t 1:_:1—— —_—— — e o o
an~ (1) 1 3+5 7+



