
MATH 122: Calculus II



Section 8.6 Representing Functions as Power
Series



8.6 Representing Functions as Power Series

This section deals with representing certain functions as power series

either by starting with a geometric series and manipulating it or by

differentiating or integrating a known series.

The reason for doing this is that it provides us with a way of

integrating functions that don’t have elementary antiderivatives, for

solving certain differential equations, or for approximating functions

by polynomials.



8.6 Representing Functions as Power Series

Consider the series

∞
∑

n=0

xn = 1 + x + x2 + x3 + · · ·

It is a geometric series with a = 1 and r = x. We know that it will

converge if |r| = |x| < 1. In fact, it will converge to

a

1 − r
=

1

1 − x
.

Therefore

1

1 − x
= 1 + x + x2 + x3 + · · · =

∞
∑

n=0

xn provided that |x| < 1.



8.6 Representing Functions as Power Series

It is important to realize what we mean when we say that

1

1 − x
= 1 + x + x2 + x3 + · · · =

∞
∑

n=0

xn provided that |x| < 1.

If |x| < 1, then the function on the left and the power series on the

right produce the exact same result.

If |x| ≥ 1, we may still be able to compute with the function on the

left (except when x = 1), but the power series diverges. For these

values of x, the two sides of the equation give different results.



8.6 Representing Functions as Power Series

Example 1

Find a power series representation of f (x) =
1

1 − x3
and state the

interval of convergence.

We know that

1

1 − x
= 1 + x + x2 + x3 + · · · =

∞
∑

n=0

xn provided that |x| < 1.

Replace x by x3 in the equation above:

1

1 − x3
= 1 + x3 + (x3)2 + (x3)3 + · · ·

= 1 + x3 + x6 + x9 + · · · =

∞
∑

n=0

x3n



8.6 Representing Functions as Power Series

Example 1 (continued)

1

1 − x3
= 1 + x3 + x6 + x9 + · · · =

∞
∑

n=0

x3n

The right-hand side is a geometric series with r = x3. It will converge

when |x3| < 1, which is that same as −1 < x3 < 1, meaning that

−1 < x < 1.

The radius of convergence is R = 1, and the interval of convergence is

(−1, 1).



8.6 Representing Functions as Power Series

Example 2

Find a power series representation for g(x) =
1

x + 3
and state the

interval of convergence.

We want to use the series for
1

1 − x
again.

Before we can use it, we need to make g(x) “look more like”
1

1 − x
.

1

x + 3
=

1

3
(

1 +
x

3

) =
1

3
[

1 −
(

−
x

3

)]

This shows that to find the series for g(x) we multiply the series for

1/(1 − x) by 1/3 and we substitute (−x/3) for x in the series for

1/(1 − x).



8.6 Representing Functions as Power Series

Example 2 (continued)

Therefore

g(x) =
1

3
[

1 −
(

−
x

3

)] =
1

3

∞
∑

n=0

(

−
x

3

)n

=
∞
∑

n=0

(−1)n

3n+1
xn.

This series converges when | − x/3| < 1, which is the same as |x| < 3.

The radius of convergence is R = 3 and the interval of convergence is

(−3, 3).



8.6 Representing Functions as Power Series

Example 2 (continued)

Using the power series representation for g(x) =
1

x + 3
, find a power

series representation for h(x) =
x

x + 3
.

We multiply the series just obtained by x to produce the series for

h(x):

h(x) =
x

x + 3
= x

∞
∑

n=0

(−1)n

3n+1
xn =

∞
∑

n=0

(−1)n

3n+1
xn+1 =

∞
∑

n=1

(−1)n−1

3n
xn.

The interval of convergence is the same as before: (−3, 3).



8.6 Representing Functions as Power Series

Theorem 2: Differentiation and Integration of Power Series

If the power series
∑

cn(x − a)n has a radius of convergence R > 0, then the

function f defined by

f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · =

∞∑
n=0

cn(x − a)n

is differentiable (and therefore continuous) on (a − R, a + R).

Moreover

(i) f
′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · =

∞∑
n=1

ncn(x − a)n−1

(ii)

∫
f (x) dx = C + c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ · · · =

C +

∞∑
n=0

cn

(x − a)n+1

n + 1

The radii of convergence of the power series in (i) and (ii) are both R.



8.6 Representing Functions as Power Series

Notice that in (ii) above we did the following:

∫

c0 dx = c0x + C1 = c0(x − a) + C,

where C = C1 + c0a. This is done so that all of the terms in (ii) have

the same form.

Theorem 2 says that we can differentiate and integrate a power series

by differentiating and integrating each term individually. In this

regard, power series behave like polynomials.



8.6 Representing Functions as Power Series

Note 1

Equations (i) and (ii) can be rewritten as

◮

d

dx

[

∞
∑

n=0

cn(x − a)n

]

=

∞
∑

n=0

d

dx
[cn(x − a)n]

◮

∫

[

∞
∑

n=0

cn(x − a)n

]

dx =

∞
∑

n=0

∫

cn(x − a)ndx

These are true provided we are dealing with power series. They may

not hold for other types of series.



8.6 Representing Functions as Power Series

Note 2

Theorem 2 states that the radius of convergence stays the same when

a power series is differentiated or integrated. This does not mean that

the interval of convergence remains the same.

For instance the original series for f (x) might converge at an endpoint,

but the differentiated series may fail to converge at this same endpoint.



8.6 Representing Functions as Power Series

Example 3

Find a power series representation for f (x) =
x3

(x − 2)2
and state the

interval of convergence.

We focus first on finding a power series representation for
1

(x − 2)2
.

Once we have that, we will multiply it by x3.

Notice that

d

dx

[

1

x − 2

]

=
−1

(x − 2)2
or

d

dx

[

−1

x − 2

]

=
1

(x − 2)2
.

This says that we should find a power series representation for
−1

x − 2
,

and then differentiate it term-by-term to obtain a series for
1

(x − 2)2
.



8.6 Representing Functions as Power Series

Example 3 (continued)

We want to use the series for 1/(1 − x) to obtain a series for

−1/(x − 2) = 1/(2 − x). Notice that

1

2 − x
=

1

2
(

1 −
x

2

) .

Therefore, we replace x by x/2 in the series for 1/(1 − x) and also

multiply it by 1/2:

1

2 − x
=

1

2
(

1 −
x

2

) =
1

2

∞
∑

n=0

( x

2

)n

=

∞
∑

n=0

xn

2n+1
.

This series converges when |x/2| < 1, that is |x| < 2, or −2 < x < 2.



8.6 Representing Functions as Power Series

Example 3 (continued)

1

2 − x
=

∞
∑

n=0

xn

2n+1

Compute the derivative on both sides:

d

dx

[

1

2 − x

]

=
d

dx

[

∞
∑

n=0

xn

2n+1

]

.

This leads to:
1

(x − 2)2
=

∞
∑

n=1

nxn−1

2n+1
.

This series converges on the same interval as the series for 1/(2 − x),
namely, (−2, 2).



8.6 Representing Functions as Power Series

Example 3 (continued)

To obtain the series representation for
x3

(x − 2)2
, multiply the last

series by x3.

x3

(x − 2)2
= x3 1

(x − 2)2
= x3

∞
∑

n=1

nxn−1

2n+1
=

∞
∑

n=1

nxn+2

2n+1
=

∞
∑

n=3

(n − 2)xn

2n−1

The interval of convergence is (−2, 2).



8.6 Representing Functions as Power Series

Example 4

Find a power series representation for f (x) = ln(5 − x) and its radius

of convergence.

Notice that f ′(x) =
−1

5 − x
. Integrating both sides of this equation

gives
∫

f ′(x) dx = f (x) =

∫

−1

5 − x
dx.

We, therefore, need a power series representation for −1/(5 − x) that

we will integrate term-by-term to obtain the desired series.

−1

5 − x
=

−1

5
(

1 −
x

5

)



8.6 Representing Functions as Power Series

Example 4 (continued)

To obtain the series for −1/(5 − x), replace x by x/5 in the series for

1/(1 − x), and also multiply it by −1/5:

−1

5 − x
=

−1

5
(

1 −
x

5

) = −
1

5

∞
∑

n=0

( x

5

)n

=
∞
∑

n=0

−
xn

5n+1
.

This series converges for |x/5| < 1, which is the same as |x| < 5, or

−5 < x < 5. The radius of convergence is R = 5.

Integrating term-by-term:

ln(5−x) =

∫

−1

5 − x
dx =

∫

(

∞
∑

n=0

−
xn

5n+1

)

dx =
∞
∑

n=0

∫
(

−
xn

5n+1
dx

)



8.6 Representing Functions as Power Series

Example 4 (continued)

ln(5 − x) =
∞
∑

n=0

∫
(

−
xn

5n+1
dx

)

= C +
∞
∑

n=0

−
xn+1

(n + 1)5n+1

To find C, set x = 0:

ln(5 − 0) = ln(5) = C +

∞
∑

n=0

−
0n+1

(n + 1)5n+1
= C.



8.6 Representing Functions as Power Series

Example 4 (continued)

Therefore,

ln(5 − x) = ln(5) +
∞
∑

n=0

−
xn+1

(n + 1)5n+1

= ln(5)−
x

5
−

x2

2 · 52
−

x3

3 · 53
−

x4

4 · 54
− · · ·

The radius of convergence is the same as for the original series:

R = 5. The interval of convergence is again (−5, 5).



8.6 Representing Functions as Power Series

Example 5

Evaluate

∫

t

1 − t8
dt as a power series.

We use a familiar strategy: obtain a power series for 1/(1 − t8) using

the power series for 1/(1 − x), and then multiply by t:

t

1 − t8
= t

(

1

1 − t8

)

= t

∞
∑

n=0

(t8)n =
∞
∑

n=0

t8n+1.

This can be integrated term-by-term to obtain the desired result.



8.6 Representing Functions as Power Series

Example 5 (continued)

∫

t

1 − t8
dt =

∫

(

∞
∑

n=0

t8n+1

)

dt

=

∞
∑

n=0

(
∫

t8n+1 dt

)

= C +

∞
∑

n=0

t8n+2

8n + 2

The geometric series for
1

1 − t8
converges when |t8| < 1, that is,

when −1 < t < 1 (radius R = 1).

The series for

∫

t

1 − t8
dt also converges on −1 < t < 1.



8.6 Representing Functions as Power Series

Example 6

Find a power series representation for f (x) = tan−1(x).

Note that f ′(x) =
1

1 + x2
. Therefore

tan−1(x) =

∫

1

1 + x2
dx.

We, therefore, need a power series for 1/(1 + x2). This can be

obtained by substituting −x2 for x in the power series for 1/(1 − x):

1

1 + x2
=

1

1 − (−x2)
=

∞
∑

n=0

(−x2)n =
∞
∑

n=0

(−1)nx2n.



8.6 Representing Functions as Power Series

Example 6 (continued)

tan−1(x) =

∫

1

1 + x2
dx

=

∫

(

∞
∑

n=0

(−1)nx2n

)

dx

=
∞
∑

n=0

∫

(

(−1)nx2n dx

)

= C +
∞
∑

n=0

(−1)n x2n+1

2n + 1

= C + x −
x3

3
+

x5

5
−

x7

7
+ · · ·



8.6 Representing Functions as Power Series

Example 6 (continued)

To find C, set x = 0. This leads to C = tan−1(0) = 0. Therefore

tan−1(x) = x −
x3

3
+

x5

5
−

x7

7
+ · · · =

∞
∑

n=0

(−1)n x2n+1

2n + 1

The series for 1/(1 + x2) converges when | − x2| < 1 which is the

same as −1 < x < 1.

Therefore, the series for tan−1(x) also converges when −1 < x < 1.

In addition, it can be shown that it converges when x = ±1 (much

harder to do).

If we substitute x = 1 into the series above we get:

tan−1(1) =
π

4
= 1 −

1

3
+

1

5
−

1

7
+ · · ·


