1 General Derivative Rules

1. Constant Rule
$$\frac{d}{dx}[c] = 0$$

2. Constant Multiple Rule
$$\frac{d}{dx} [cf(x)] = cf'(x)$$

3. Sum Rule
$$\frac{d}{dx}\left[f(x)+g(x)\right]=f'(x)+g'(x)$$

4. Difference Rule
$$\frac{d}{dx} \left[f(x) - g(x) \right] = f'(x) - g'(x)$$

5. Product Rule
$$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

6. Quotient Rule
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

7. Chain Rule
$$\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)$$

2 Derivative Rules for Particular Functions

	Basic Rule	Chain Rule Form
1. Powers	$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\frac{d}{dx}\left[\left(f(x)\right)^n\right] = n(f(x))^{n-1}f'(x)$
2. Sine	$\frac{d}{dx}\left[\sin x\right] = \cos x$	$\frac{d}{dx}\left[\sin\left(f(x)\right)\right] = \cos\left(f(x)\right)f'(x)$
3. Cosine	$\frac{d}{dx}\left[\cos x\right] = -\sin x$	$\frac{d}{dx}\left[\cos\left(f(x)\right)\right] = -\sin\left(f(x)\right)f'(x)$
4. Tangent	$\frac{d}{dx}\left[\tan x\right] = \sec^2 x$	$\frac{d}{dx}\left[\tan\left(f(x)\right)\right] = \sec^2\left(f(x)\right)f'(x)$
5. Secant	$\frac{d}{dx}\left[\sec x\right] = \sec x \tan x$	$\frac{d}{dx}\left[\sec\left(f(x)\right)\right] = \sec\left(f(x)\right)\tan\left(f(x)\right)f'(x)$
6. Cosecant	$\frac{d}{dx}\left[\csc x\right] = -\csc x \cot x$	$\frac{d}{dx}\left[\csc\left(f(x)\right)\right] = -\csc\left(f(x)\right)\cot\left(f(x)\right)f'(x)$
7. Cotangent	$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$	$\frac{d}{dx}\left[\cot\left(f(x)\right)\right] = -\csc^2\left(f(x)\right)f'(x)$
8. Exponential (base e)	$\frac{d}{dx}\left[e^{x}\right]=e^{x}$	$\frac{d}{dx}\left[e^{(f(x))}\right] = e^{(f(x))}f'(x)$
9. Exponential (base <i>a</i>)	$\frac{d}{dx}\left[a^{x}\right] = a^{x} \ln a$	$\frac{d}{dx}\left[a^{(f(x))}\right] = a^{(f(x))} \ln af'(x)$
10. Natural Logarithm	$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}$	$\frac{d}{dx}\left[\ln f(x)\right] = \frac{1}{f(x)}f'(x)$
11. Logarithm (base a)	$\frac{d}{dx}\left[\log_a x\right] = \frac{1}{x \ln a}$	$\frac{d}{dx}\left[\log_a f(x)\right] = \frac{1}{f(x)\ln a}f'(x)$
12. Inverse sine	$\frac{d}{dx}\left[\arcsin x\right] = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left[\arcsin f(x)\right] = \frac{1}{\sqrt{1 - (f(x))^2}} f'(x)$
13. Inverse cosine	$\frac{d}{dx}\left[\arccos x\right] = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left[\arccos f(x)\right] = \frac{-1}{\sqrt{1 - (f(x))^2}} f'(x)$
14. Inverse tangent	$\frac{d}{dx}\left[\arctan x\right] = \frac{1}{1+x^2}$	$\frac{d}{dx}\left[\arctan f(x)\right] = \frac{1}{1 + (f(x))^2}f'(x)$

3 General Antiderivative Rules

Let F(x) be any antiderivative of f(x). That is, F'(x) = f(x). The most general antiderivative of f(x) is then F(x) + C.

	Original Function	General Antiderivative
1. Constant Rule	c (a constant)	cx + C
2. Constant Multiple Rule	cf(x)	cF(x) + C
3. Sum Rule	f(x) + g(x)	F(x)+G(x)+C
4. Difference Rule	f(x) - g(x)	F(x) - G(x) + C

4 Antiderivative Rules for Particular Functions

	Original Function	General Antiderivative
1. Powers $(n \neq -1)$	x ⁿ	$\frac{x^{n+1}}{n+1} + C$
2. Powers $(n=-1)$	$\frac{1}{x}$	$\ln x + C$
3. Sine	$\sin x$	$-\cos x + C$
4. Cosine	cos x	$\sin x + C$
5. Secant squared	$sec^2 x$	tan x + C
6. Secant times tangent	sec x tan x	$\sec x + C$
7. Cosecant times cotangent	$\csc x \cot x$	$-\csc x + C$
8. Cosecant squared	$\csc^2 x$	$-\cot x + C$
9. Exponential (base e)	e ^x	$e^x + C$
10. Exponential (base a)	a ^x	$\frac{a^x}{\ln a} + C$
11. Inverse trigonometric	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$
12. Inverse trigonometric	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x + C$
13. Inverse trigonometric	$\frac{1}{1+x^2}$	$\arctan x + C$