Question 1:

(a) A car travelling at $30 \mathrm{~m} / \mathrm{s}$ applies the brakes and accelerates at $a(t)=-10 t-5 \mathrm{~m} / \mathrm{s}^{2}$, where $t=0$ corresponds to the instant the brakes are applied (notice the acceleration is negative since the car is slowing down.) How long does it take the car to come to a stop?
(b) Find $f(x)$ if

$$
f^{\prime \prime}(x)=28 \sqrt[3]{x}+\sin (x), \quad f^{\prime}(0)=1, \quad f(0)=\pi
$$

Question 2: Determine the following:
(a) $\int x\left(x^{2}-3\right) d x$
(b) $\int \frac{x^{2}+2 \sqrt{x}+1}{x} d x$
(c) $\int_{0}^{\pi} 2 \sin (x)-\frac{\cos (x)}{3} d x$
(d) $\int_{0}^{3}|3 x-6| d x$

Question 3: The graph of $y=f(t)$ below represents the outside temperature over a seven hour period of a January day. What was the average temperature over the seven hours?

Question 4: An ant colony of size 100 grows over time according at a rate given by $\frac{100 t^{2}}{1+t^{3}}$ ants per week, where $t=0$ corresponds to the present. What will be the ant colony size in two weeks time?

Question 5: Determine the following:
(a) $\int x\left(1-x^{2}\right)^{1 / 2} d x$
(b) $\int \sec ^{2}(3 x+2) d x$
(c) $\int \frac{e^{x}}{\left(5-3 e^{x}\right)} d x$
(d) $\int x^{3} \sqrt{x^{2}+1} d x \quad$ (Hint: $\left.x^{3}=x \cdot x^{2}\right)$

Question 6: Determine the following:
(a) $\int_{0}^{1} \frac{10 \sqrt{x}}{\left(1+x^{3 / 2}\right)^{2}} d x$
(b) $\int_{0}^{\pi} \frac{\sin (t)}{2-\cos (t)} d t$
(c) $\int_{e}^{e^{2}} \frac{1}{x[\ln (x))]^{3}} d x$

