Question 1:
(a) Use a linear approximation $T_{1}(x)$ to estimate $f(-1 / 6)$ where $f(x)=\left(2+e^{x}\right)^{2}$. Simplify your final answer.
(b) Give an error bound on your approximation in part (a). Again, simplify your final answer.

Question 2:

(a) Use a Taylor polynomial of degree 2 about $a=4$ to estimate $\sqrt{5}$. Simplify your final answer.
(b) Give an error bound on your approximation in part (a). Again, simplify your final answer.

Question 3:
(a) Find the first three nonzero terms of the Maclaurin series for $f(x)=\frac{\arctan (2 x)}{1+x^{2}}$.
(b) Find the first four nonzero terms of the Taylor series about $a=2$ for $g(x)=\frac{2}{7-3 x}$ and state the open interval of convergence.

Question 4: The first three terms of the Maclaurin series for $\tan (x)$ is

$$
\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots
$$

Use this to find the first three nonzero terms of the Maclaurin series for $g(x)=x^{3} \sec ^{2}(x)$. (There are several ways to do this, but one way is much easier than the others.)

Question 5: Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1-x^{2}\right)-e^{\left(-x^{2}\right)}+1}{3 x^{4}}
$$

Question 6: Find the radius of convergence R and open interval of convergence \mathcal{I} for the power series

$$
f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x+3)^{2 k}}{9^{k}}
$$

Question 7: Find the radius of convergence R and open interval of convergence \mathcal{I} for the power series

$$
f(x)=\sum_{k=0}^{\infty} \frac{2^{k} \sqrt{k} x^{k}}{k!}
$$

