Question 1 [15 points]: Differentiate the following functions (you do not have to simplify your answers, however points will be deducted for improper use of notation):
(a) $[3] \quad y=2 x^{3}+\frac{3}{x}$
(b) [3] $\quad f(x)=\left(x^{2}+x+1\right) \sqrt{x^{2}+2}$
(c) $[3] \quad g(t)=\sec \left(\frac{1}{t^{2}}\right)$
(d) $[3] \quad y=\frac{4 x^{3}}{\tan x}$
(e) $[3] \quad f(x)=5^{x} x^{5}$

Question 2 [14 points]:
(a) [3] Find $\frac{d y}{d x}$ (you do not have to simplify your answer): $y=\left(\sin ^{2} x\right) \ln \left(1-x^{2}\right)$
(b) [3] Find and simplify $f^{\prime}(\pi / 2)$ where $f(x)=e^{\cos x}$.
(c) [4] Compute $g^{\prime \prime}(2)$ if $g(t)=\ln (1+\sin (\pi t))$
(d) [4] Find the derivative (you do not have to simplify your answer): $y=\sqrt[3]{e^{2 x} x^{3}}$

Question 3 [12 points]: Evaluate the following limits (it may be useful to recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$):
(a) [3] $\quad \lim _{t \rightarrow 1} \frac{t^{2}-1}{t^{2}-3 t+2}$
(b) [3] $\quad \lim _{x \rightarrow \infty} \frac{-9 x^{5}-x^{2}+x}{1+2 x^{3}-3 x^{5}}$
(c) $[3] \quad \lim _{x \rightarrow 1^{+}} e^{-1 /(\sqrt{x}-1)}$
(d) $[3] \quad \lim _{x \rightarrow 0} \frac{\tan (3 x)}{\sin (5 x)}$

Question 4 [10 points]:
(a) [3] Find the general antiderivative: $f(x)=4 x^{3}-2 e^{x}+\frac{1}{x}$
(b) [3] Find the general antiderivative: $f(x)=\frac{2 x-\sqrt[3]{x^{2}}+7}{x^{3}}$
(c) [4] A particle has acceleration $a(t)=6 t-2$ where t is time in seconds. If the initial velocity is $v(0)=3$ and initial position is $s(0)=1$, determine the position of the particle at time $t=2$ seconds.

Question 5 [8 points]: Let $f(x)=\frac{1}{\sqrt{x}}$. Use the definition of the derivative to find $f^{\prime}(4)$. (No credit will be given if $f^{\prime}(4)$ is found using differentiation rules.)

Question 6 [10 points]:
(a) [5] Determine the x-intercept q of the tangent line in the following figure.

(b) [5] Determine the linear approximation of $f(x)=x \sin \left(\pi x^{2}\right)$ at $a=2$.

Question 7 [10 points]: A height of a cylinder is decreasing at 2 cm per minute. At what rate is the radius increasing at the instant when the height is 4 cm if the volume is a constant $V=\pi \mathrm{cm}^{3}$ at all times? State units with your answer. (Recall that the volume of a cylinder is $V=\pi r^{2} h$.)

Question 8 [10 points]: A right circular cylinder is inscribed in a cone of height and base radius both equal to 3 cm . Find the largest possible volume of such a cylinder. Clearly justify all conclusions and state units with your answer. (Recall that the volume of a cylinder is $V=\pi r^{2} h$, while that of a cone is $V=\pi r^{2} h / 3$.)

Question 9 [10 points]: A box with square base and no top is to have a volume of $6 \mathrm{~m}^{3}$. Material for the bottom of the box costs $\$ 3$ per square metre, while the material for the sides costs $\$ 2$ per square metre. Determine the dimensions of the least expensive such box. Clearly justify all conclusions and state units with your answer.

Question 10 [10 points]:
(a) [5] Determine the equation of the tangent line to the curve

$$
\sqrt{x+y}=3+x^{2} y^{2}
$$

at the point $(0,9)$. Implicit differentiation may help here.
(b) [5] Use logarithmic differentiation to find $\frac{d y}{d x}$:

$$
y=\sqrt{x} e^{x^{2}}\left(x^{2}+1\right)^{10}
$$

Question 11 [16 points]: For this question consider the function $f(x)=\frac{x^{2}+12}{x-2}$.
(a) [1] Determine the domain of $f(x)$.
(b) [2] Determine the x and y intercepts of the graph of $y=f(x)$.
(c) [4] Determine the intervals of increase and decrease of $f(x)$.
(d) [1] State the local maxima and minima of $f(x)$.
(e) [2] Using the fact that $f^{\prime \prime}(x)=\frac{32}{(x-2)^{3}}$ determine the intervals of concavity of $f(x)$ and identify inflection points, if any.
(f) [2] Determine the horizontal and vertical asymptotes, if any.
(g) [4] Use the information gathered in parts (a)-(f) to make an informative sketch of the graph of $y=f(x)$. Label your axes and any of the interesting points on your graph (intercepts, local extrema, etc.)

