Question 1 [15 points]: Differentiate the following functions (you do not have to simplify your answers, however points will be deducted for improper use of notation):
(a) $[3] \quad y=3 x^{4}-\frac{\sqrt{x}}{2}-\frac{7}{x}$
(b) [3] $\quad f(x)=\tan x \ln x$
(c) $[3] \quad g(x)=\frac{3^{x}}{x+e^{x}}$
(d) $[3] \quad f(x)=e^{\csc (x)}$
(e) $[3] \quad y=\cos \left(\sqrt{1-x^{2}}\right)$

Question 2 [12 points]:
(a) [4] If $s(t)=t^{3}-3 t+1$ represents the position of a particle in metres at time $t \geq 0$ seconds, determine the acceleration of the particle when the velocity is $9 \mathrm{~m} / \mathrm{s}$.
(b) [4] Compute $g^{\prime \prime}(\pi / 4)$ if $g(x)=\ln (\sin x)$.
(c) [4] Determine the point (x, y) on the graph of $y=\frac{e^{x}}{x}$ at which the tangent line is horizontal.

Question 3 [12 points]: Evaluate the following limits (it may be useful to recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$):
(a) $[3] \quad \lim _{x \rightarrow-4} \frac{x^{2}+x-12}{x^{2}+2 x-8}$
(b) $[3] \quad \lim _{x \rightarrow \infty} \frac{-5 x^{7}+7 x^{5}}{7 x^{5}-x-1}$
(c) $[3] \quad \lim _{x \rightarrow 0^{+}} \ln (1+\sqrt{x})$
(d) [3] $\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\tan (5 \theta)}$

Question 4 [11 points]:

(a) [3] Determine the general antiderivative of $f(x)=x^{1 / 2}-\sec ^{2} x+\pi$
(b) [3] If $f^{\prime}(x)=2 x-\frac{e^{x}}{2}-1$ and $f(0)=-1$, determine $f(x)$.
(c) [5] A particle has acceleration $a(t)=\sin t+\cos t$ where t is time in seconds. If the initial velocity is $v(0)=-1$ and initial position is $s(0)=1$, determine the position of the particle at time $t=\pi$ seconds.

Question 5 [12 points]:

(a) [4] Determine the equation of the tangent line to $y=\frac{x+\ln x}{x^{3}}$ at the point where $x=1$.
(b) [4] At the point where $x=a$ the tangent line to $f(x)=x^{3}$ is parallel to the tangent line to $g(x)=x^{2}+x+5$. Determine all possible values of a.
(c) [4] Use a linear approximation to estimate $\frac{1}{\sqrt{101}}$.

Question 6 [8 points]:
(a) [4] For the curve defined by $\sqrt{x y}=x^{2} y-2$, determine the equation of the tangent line at the point $(1,4)$.
(b) [4] Use logarithmic differentiation to find y^{\prime} if $y=(\sin x)^{\cos x}$.

Question 7 [8 points]: The volume of a melting cube of ice is decreasing by $2 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the surface area of the cube decreasing when the side length of the cube is 4 cm ? State units with your answer.

Question 8 [10 points]: A right circular cone is inscribed in the upper half of a sphere of radius 3 m as shown. Find the largest possible volume of such a cone. Clearly justify all conclusions and state units with your answer. (Recall that the volume of a cone is $V=\pi r^{2} h / 3$.)

Question 9 [10 points]: A box has length equal to twice the width. The cost to ship the box is equal to the sum of the length, width and height. If the box must have a volume of $12 \mathrm{~m}^{3}$, determine the dimensions (length, width and height) which minimize the shipping cost.

Question 10 [12 points]: For this question consider the function $f(x)=20 x^{3}-3 x^{5}$.
(a) [4] Determine the intervals of increase and decrease of $f(x)$.
(b) [2] State the x-coordinates of the relative extrema of $f(x)$.
(c) [4] Determine the intervals of concavity of $f(x)$.
(d) [2] State the x-coordinates of the inflection points of $f(x)$.

