1 General Derivative Rules

1. Constant Rule
$$\frac{d}{dx}[c] = 0$$

2. Constant Multiple Rule
$$\frac{d}{dx} [cf(x)] = cf'(x)$$

3. Sum Rule
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

4. Difference Rule
$$\frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x)$$

5. Product Rule
$$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

6. Quotient Rule
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

7. Chain Rule
$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

2 Derivative Rules for Particular Functions

	Basic Rule	Chain Rule Form
1. Powers	$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\frac{d}{dx}\left[\left(f(x)\right)^n\right] = n(f(x))^{n-1}f'(x)$
2. Sine	$\frac{d}{dx}\left[\sin x\right] = \cos x$	$\frac{d}{dx}\left[\sin\left(f(x)\right)\right] = \cos\left(f(x)\right)f'(x)$
3. Cosine	$\frac{d}{dx}\left[\cos x\right] = -\sin x$	$\frac{d}{dx}\left[\cos\left(f(x)\right)\right] = -\sin\left(f(x)\right)f'(x)$
4. Tangent	$\frac{d}{dx}\left[\tan x\right] = \sec^2 x$	$\frac{d}{dx}\left[\tan\left(f(x)\right)\right] = \sec^2\left(f(x)\right)f'(x)$
5. Secant	$\frac{d}{dx}\left[\sec x\right] = \sec x \tan x$	$\frac{d}{dx}\left[\sec\left(f(x)\right)\right] = \sec\left(f(x)\right)\tan\left(f(x)\right)f'(x)$
6. Cosecant	$\frac{d}{dx}\left[\csc x\right] = -\csc x \cot x$	$\frac{d}{dx}\left[\csc\left(f(x)\right)\right] = -\csc\left(f(x)\right)\cot\left(f(x)\right)f'(x)$
7. Cotangent	$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$	$\frac{d}{dx}\left[\cot\left(f(x)\right)\right] = -\csc^2\left(f(x)\right)f'(x)$
8. Exponential (base e)	$\frac{d}{dx}\left[e^{x}\right]=e^{x}$	$\frac{d}{dx}\left[e^{(f(x))}\right] = e^{(f(x))}f'(x)$
9. Exponential (base <i>a</i>)	$\frac{d}{dx}\left[a^{x}\right]=a^{x}\ln a$	$\frac{d}{dx}\left[a^{(f(x))}\right] = a^{(f(x))} \ln af'(x)$
10. Natural Logarithm	$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}$	$\frac{d}{dx}\left[\ln f(x)\right] = \frac{1}{f(x)}f'(x)$
11. Logarithm (base <i>a</i>)	$\frac{d}{dx}\left[\log_a x\right] = \frac{1}{x \ln a}$	$\frac{d}{dx}\left[\log_a f(x)\right] = \frac{1}{f(x)\ln a}f'(x)$