Math 121 - Test 2

Mar 2 2020

Question 1: Evaluate the following limits, if they exist

. If a limit does not exist because it is +00 or —
state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
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Question 2: Determine the value of k which makes the following function continuous at all real numbers:
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Question 3:

(a) Use the limit definition of the derivative to find '(x) if f(x) = % . Neatly show all steps and use
X

proper notation. (No credit will be given if f/(x) is found using derivative rules.)

£y e Lom  £lxb) = 00

=)o I
o o _r,[ xth  _ x
Sl N x+h +1 X Tl

,(,e/m e (et ’)L(’L-('k-#l)__\
o "’\_ KAt ) (2t

= Lo L [%ng%%/f

WA L (X +het) (x+t)
= j,w« [ - ﬂ X
h=>o (7{'(’1*'*'3)(7("'0 (7('4'(51

(b) At what value(s) of x will f fail to be differentiable?
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Question 4: The figure below shows the graphs of f, f/ and f”. ldentify each by circling the appropriate label.

f" is graph (circle one)

" is graph (circle one)

f is graph (circle one): @ b ¢

[3]
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Question 5: Find the following derivatives (it is not necessary to simplify your answers, but marks will be
deducted for improper use of notation):
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Question 6: Find the following derivatives (it is not necessary to simplify your answers, but marks will be
deducted for improper use of notation):
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Question 7: There are two tangent lines to the parabola y = 2x? that pass through the point (0, —1) (sketch
the parabola and tangent lines to see this.) For each of these tangent lines, determine the x-coordinate of the

point where the line meet the parabola. o ¥
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Question 8: Find an equation of the tangent line to the curve defined by x +2y +1 = —q at the point

(x,y)=(2,-1).
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