Question 1: Evaluate the following limits, if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
(a) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}+x-6}{|x-2|}$
(b) $\lim _{x \rightarrow-3^{-}} \frac{x+2}{\sin (x+3)}$
(c) $\lim _{x \rightarrow-\infty} \frac{x-2 x^{5}}{2 x^{2}+x^{5}}$

Question 2: Determine the value of k which makes the following function continuous at all real numbers:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq-1 \\ k-x^{3} & \text { if } x>-1\end{cases}
$$

Question 3:

(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{x}{x+1}$. Neatly show all steps and use proper notation. (No credit will be given if $f^{\prime}(x)$ is found using derivative rules.)
(b) At what value(s) of x will f fail to be differentiable?

Question 4: The figure below shows the graphs of f, f^{\prime} and $f^{\prime \prime}$. Identify each by circling the appropriate label.

f is graph (circle one): $a b c$
f^{\prime} is graph (circle one): $a \quad b \quad c$
$f^{\prime \prime}$ is graph (circle one): a b c

Question 5: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $f(x)=4 \sqrt{x}-\frac{5}{x}$
(b) $y=\sec (t)\left(1-t^{3}\right)$
(c) $g(x)=\frac{\sin (x)}{1+x-3 \cos (x)}$
(d) $y=\frac{t^{2} \tan (t)-1}{\pi^{2}}$

Question 6: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $y=\left(1+x^{2 / 3}\right)^{3 / 2}$
(b) $y=\frac{1}{2+\sqrt{3 t+4}}$
(c) $g(x)=\tan (x \sin (x))$
(d) $y=\sqrt[5]{\frac{\csc (t)}{t}}$

Question 7: There are two tangent lines to the parabola $y=2 x^{2}$ that pass through the point $(0,-1)$ (sketch the parabola and tangent lines to see this.) For each of these tangent lines, determine the x-coordinate of the point where the line meet the parabola.

Question 8: Find an equation of the tangent line to the curve defined by $x+2 y+1=\frac{y^{2}}{x-1}$ at the point $(x, y)=(2,-1)$.

