Question 1: Expand and simplify: $(1 - x + x^3)^2$

[3]

Question 2: Express as a single simplified fraction: $\frac{c}{ab^2} + \frac{a}{bc} + \frac{b}{ac}$

[3]

Question 3: Factor completely: $8x^2 + 10x + 3$

Question 4: Find all solutions: $x^3 - 2x + 1 = 0$

Question 5: Simplify and express your answer using only positive exponents: $\left(\frac{3x^{3/2}y^3}{x^2y^{-1/2}}\right)^{-2}$

[3]

Question 6: Find an equation of the line that passes through the midpoint of A(-7, 4) and B(5, -12) and which is perpendicular to the line through these two points.

Question 7: Determine $\sin(7\pi/6) - \sec(5\pi/4)$. Express your answer as a single simplified fraction.

[3]

Question 8: Find all values of x in the interval $[0, 2\pi]$ for which $2\sin(x) = \tan(x)$.

[4]

Question 9: If $tan(\theta) = -3/4$ where $\frac{3\pi}{2} < \theta < 2\pi$ then determine $csc(\theta)$.

Question 10: Express the area A of an equilateral triangle (that is, a triangle having all sides of equal length) as a function of the length x of one of its sides.

[4]

Question 11: Evaluate and simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$ where $f(x) = \frac{5}{x^2}$. Express your final answer as a single simplified fraction.

[4]

Question 12: Evaluate the limits:

(i)
$$\lim_{x \to 4} \frac{x^2 - 6x + 5}{x^2 - 4}$$

(ii)
$$\lim_{x \to -2} \frac{\sqrt{x^2 + 5}}{x^2 - 4}$$

[1]

[1]

Question 13: Evaluate the following limits, if they exist:

(a)
$$\lim_{x\to 0}\frac{x}{\sqrt{4+x}-\sqrt{4-x}}$$

(b)
$$\lim_{x\to 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

(c)
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{4}{x^2-4} \right)$$