Math 372 - Introductory Complex Variables

Apr 8 2019

Zeros and Singularities

Zeros of Holomorphic Functions

Definition: A zero of a function *f* is a point z_0 where *f* is holomorphic and $f(z_0) = 0$.

▶ **Definition:** z_0 is a zero of order *m* of *f* if *f* is holomorphic at z_0 and $f(z_0) = 0$, $f'(z_0) = 0$, $f''(z_0) = 0$, ..., $f^{(m-1)}(z_0) = 0$, but $f^{(m)}(z_0) \neq 0$.

Zeros of Holomorphic Functions

So, if f has a zero of order m at z₀, then the Taylor series for f about z₀ takes the form

$$f(z) = \frac{f^{(m)}(z_0)}{m!}(z-z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z-z_0)^{m+1} + \cdots$$

= $(z-z_0)^m \left[a_m + a_{m+1}(z-z_0) + a_{m+2}(z-z_0)^2 + \cdots\right]$
= $(z-z_0)^m g(z)$

where g(z) is holomorphic at z_0 and $g(z_0) \neq 0$ in a neighbourhood of z_0 .

• **Example:** $f(z) = \cos(z) - 1 + z^2/2$ has a zero of order 4 at z = 0 since $f(z) = \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots$

Isolated Singularities of Holomorphic Functions

- ▶ **Definition:** An isolated singularity of a function *f* is a point z_0 such that *f* is holomorphic in some punctured disk $0 < |z z_0| < R$ but *f* is not holomorphic at z_0 itself.
- **Example:** $f(z) = \exp(z)/(z-i)$ has an isolated singularity at z = i.
- If f has an isolated singularity at z₀, then it has a Laurent series representation

$$f(z) = \sum_{j=-\infty}^{\infty} a_j (z-z_0)^j$$

in the punctured disk.

 Singularities are classified based on the form of the Laurent Series.

Isolated Singularities of Holomorphic Functions

Definition: Suppose *f* has an isolated singularity at z_0 and that

$$f(z) = \sum_{j=-\infty}^{\infty} a_j (z-z_0)^j$$

on $0 < |z - z_0| < R$.

- ▶ If $a_j = 0$ for all j < 0, so that $f(z) = \sum_{j=0}^{\infty} a_j (z z_0)^j$, then z_0 is called a removable singularity.
- If a_{-m} ≠ 0 for some positive integer m but a_j = 0 for all j < -m, then z₀ is called a pole of order m of f.
- If a_j ≠ 0 for infinitely many j < 0 then z₀ is called an essential singularity of f.

Removable Singularities

Suppose *f* has a removable singularity at z_0 . Then

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j$$

= $a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$

Example:
$$\frac{e^z - 1}{z} = 1 + \frac{z}{2!} + z^2 3! + \cdots$$

- *f* is bounded in some punctured circular neighbourhood of *z*₀
- $\blacktriangleright \lim_{z\to z_0} f(z) \text{ exists.}$
- ► f can be redefined at z = z₀ so that the new function is holomorphic at z₀. Define f(z₀) = a₀.

Poles

Suppose *f* has a pole of order *m* at z_0 . Then

$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \dots + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

Example: $\frac{\cos z}{z^2} = \frac{1}{z^2} - \frac{1}{2} + \frac{z^2}{4!} + \cdots$ has a pole of order 2 at z = 0

• $(z - z_0)^m f(z)$ has a removable singularity at z_0

$$\blacktriangleright \ \lim_{z\to z_0} |f(z)| = \infty \ .$$

• **Lemma:** *f* has a pole of order *m* at z_0 if and only if $f(z) = g(z)/(z - z_0)^m$ in some punctured neighbourhood of z_0 where *g* is holomorphic and not zero at z_0 .

Lemma: If f has a zero of order m at z₀ then 1/f has a pole of order m. If f has a pole of order m at z₀, then 1/f has a removable singularity at z₀, and 1/f has a zero of order m at z₀ if we define (1/f)(z₀) = 0.

Essential Singularities

Suppose *f* has an essential singularity at z_0 . Then

$$f(z) = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

Example:
$$\exp(1/z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

Theorem (*Picard*): A function with an essential singularity at z_0 assumes every complex number, with possibly one exception, as a value in any neighbourhood of z_0 .

Summary

Theorem: Suppose f has an isolated singularity at z_0 . Then

- ► z_0 is a removable singularity $\Leftrightarrow |f|$ is bounded near $z_0 \Leftrightarrow \lim_{z \to z_0} f(z)$ exists $\Leftrightarrow f$ can be redefined at z_0 so that f is holomorphic at z_0 .
- ► z_0 is a pole $\Leftrightarrow \lim_{z \to z_0} |f(z)| = \infty \Leftrightarrow f(z) = g(z)/(z z_0)^m$ in some punctured neighbourhood of z_0 where g is holomorphic and not zero at z_0 .
- *z*₀ is an esential singularity ⇔ |*f*(*z*)| is neither bounded near *z*₀ nor goes to ∞ as *z* → *z*₀ ⇔ *f* assumes every complex number, with possibly one exception, as a value in any neighbourhood of *z*₀.

Can use this theorem to classify isolated singularities without constructing the Laurent Series.