Math 372 - Introductory Complex Variables

Apr 8 2019

[Zeros and Singularities](#page-1-0)

Zeros of Holomorphic Functions

 \triangleright **Definition:** A zero of a function *f* is a point z_0 where *f* is holomorphic and $f(z_0) = 0$.

 \triangleright **Definition:** z_0 is a zero of order m of f if f is holomorphic at z_0 and $f(z_0) = 0$, $f'(z_0) = 0$, $f''(z_0) = 0, \ldots$, $f^{(m-1)}(z_0) = 0$, but $f^{(m)}(z_0) \neq 0$.

Zeros of Holomorphic Functions

 \triangleright So, if *f* has a zero of order *m* at z_0 , then the Taylor series for f about z_0 takes the form

$$
f(z) = \frac{f^{(m)}(z_0)}{m!}(z-z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z-z_0)^{m+1} + \cdots
$$

= $(z-z_0)^m \left[a_m + a_{m+1}(z-z_0) + a_{m+2}(z-z_0)^2 + \cdots \right]$
= $(z-z_0)^m g(z)$

where $g(z)$ is holomorphic at z_0 and $g(z_0) \neq 0$ in a neighbourhood of z_0 .

Example: $f(z) = cos(z) - 1 + z^2/2$ has a zero of order 4 at $z = 0$ since $f(z) = \frac{z^4}{4!}$ $rac{z^4}{4!} - \frac{z^6}{6!}$ $\frac{2}{6!} + \cdots$

Isolated Singularities of Holomorphic Functions

- ▶ **Definition:** An isolated singularity of a function *f* is a point z_0 such that *f* is holomorphic in some punctured disk $0 < |z - z_0| < R$ but *f* is not holomorphic at z_0 itself.
- **► Example:** $f(z) = \exp(z)/(z i)$ has an isolated singularity at $z = i$.
- If f has an isolated singularity at z_0 , then it has a Laurent series representation

$$
f(z)=\sum_{j=-\infty}^{\infty}a_j(z-z_0)^j
$$

in the punctured disk.

 \triangleright Singularities are classified based on the form of the Laurent Series.

Isolated Singularities of Holomorphic Functions

Definition: Suppose *f* has an isolated singularity at z_0 and that

$$
f(z)=\sum_{j=-\infty}^{\infty}a_j(z-z_0)^j
$$

on $0 < |z - z_0| < R$.

- ▶ If $a_j = 0$ for all $j < 0$, so that $f(z) = \sum_{j=0}^{\infty} a_j (z z_0)^j$, then **z**⁰ is called a removable singularity.
- **►** If $a_{-m} \neq 0$ for some positive integer *m* but $a_j = 0$ for all $j < -m$, then z_0 is called a pole of order *m* of *f*.
- If $a_j \neq 0$ for infinitely many $j < 0$ then z_0 is called an essential singularity of *f*.

Removable Singularities

Suppose *f* has a removable singularity at z_0 . Then

$$
f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j
$$

= $a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$

Example:
$$
\frac{e^z - 1}{z} = 1 + \frac{z}{2!} + z^2 3! + \cdots
$$

- **F** is bounded in some punctured circular neighbourhood of *z*0
- Ilim_{$z\rightarrow z_0$} $f(z)$ exists.
- If can be redefined at $z = z_0$ so that the new function is holomorphic at z_0 . Define $f(z_0) = a_0$.

Poles

Suppose *f* has a pole of order *m* at z_0 . Then

$$
f(z)=\frac{a_{-m}}{(z-z_0)^m}+\frac{a_{-m+1}}{(z-z_0)^{m-1}}+\cdots+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\cdots
$$

Example: $\frac{\cos z}{z^2} = \frac{1}{z^2}$ $\frac{1}{z^2} - \frac{1}{2}$ $\frac{1}{2} + \frac{z^2}{4!}$ $\frac{1}{4!} + \cdots$ has a pole of order 2 at $z = 0$

- ► $(z z_0)^m f(z)$ has a removable singularity at z_0 lim_{$z\rightarrow z_0$} $|f(z)| = \infty$.
- **Lemma:** *f* has a pole of order m at z_0 if and only if $f(z) = g(z)/(z - z_0)^m$ in some punctured neighbourhood of z_0 where g is holomorphic and not zero at z_0 .
- **Lemma:** If *f* has a zero of order *m* at z_0 then 1/*f* has a pole of order *m*. If *f* has a pole of order *m* at z_0 , then $1/f$ has a removable singularity at z_0 , and $1/f$ has a zero of order *m* at z_0 if we define $(1/f)(z_0) = 0$.

Essential Singularities

Suppose *f* has an essential singularity at z_0 . Then

$$
f(z) = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots
$$

Example:
$$
\exp(1/z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots
$$

Theorem *(Picard)***:** A function with an essential singularity at z_0 assumes every complex number, with possibly one exception, as a value in any neighbourhood of *z*0.

Summary

Theorem: Suppose *f* has an isolated singularity at z_0 . Then

- \triangleright *z*₀ is a removable singularity \Leftrightarrow |*f*| is bounded near *z*₀ \Leftrightarrow lim $_{z\rightarrow z_{0}}$ $f(z)$ exists \Leftrightarrow f can be redefined at z_{0} so that f is holomorphic at z_0 .
- ▶ *z*₀ is a pole \Leftrightarrow $\lim_{z\to z_0}$ $|f(z)| = \infty \Leftrightarrow f(z) = g(z)/(z z_0)^m$ in some punctured neighbourhood of z_0 where q is holomorphic and not zero at z_0 .
- \triangleright *z*₀ is an esential singularity \Leftrightarrow $|f(z)|$ is neither bounded near z_0 nor goes to ∞ as $z \to z_0 \Leftrightarrow f$ assumes every complex number, with possibly one exception, as a value in any neighbourhood of z_0 .

Can use this theorem to classify isolated singularities without constructing the Laurent Series.