ASN 9

Math 372 - Introductory Complex Variables Due Fri Apr 12 2019

1. Read through example 5.14 in the textbook and use the same method to calculate the value of
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. In this exercise we'll prove one form of the Maximum Modulus Principle: Suppose f(z) is holomor-
phic on the region G containing the simple closed positively oriented piecewise smooth contractible
path 7 and let S be the set of points inside and on vy (so S is closed and includes 7 as its boundary.)
Then the absolute maximum of |f(z)| on S occurs on the boundary 7 itself.

Proceed as follows: Let zy be any point strictly inside v and let M be the maximum of |f(z)| on
v. We will show that |f(z)| < M.

(a) Let n > 1 be an integer. Then
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(b) Let p be the minimum distance from z to v and ¢(+y) be the length of . Use (1) to show
that
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(c) Take (real) nt" roots of both sides of (2) and then let n — oo .
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D[z, R] on which it converges. Determine the center and radius of this disk.

defines a holomorphic function on the largest open disk

. For each of the following, determine the largest open disk on which the Taylor series converges

(a) ZSZL+Z4 about z = 0.
(b) ¢ about 4j
ut z = 4.
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. Determine the Taylor series for f(z) = sinh(z)cosh(z) about z = 0 and state the radius of
convergence.
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. Find a Laurent series expansion for f(z) = about z=0.
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