- 1. Read through example 5.14 in the textbook and use the same method to calculate the value of the real integral $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$.
- 2. In this exercise we'll prove one form of the *Maximum Modulus Principle*: Suppose f(z) is holomorphic on the region G containing the simple closed positively oriented piecewise smooth contractible path γ and let S be the set of points inside and on γ (so S is closed and includes γ as its boundary.) Then the absolute maximum of |f(z)| on S occurs on the boundary γ itself.

Proceed as follows: Let z_0 be any point strictly inside γ and let M be the maximum of |f(z)| on γ . We will show that $|f(z_0)| \leq M$.

(a) Let $n \ge 1$ be an integer. Then

$$[f(z_0)]^n = \frac{1}{2\pi i} \int_{\gamma} \frac{[f(\zeta)]^n}{\zeta - z_0} d\zeta \quad \text{(why?)}$$
(1)

(b) Let μ be the minimum distance from z_0 to γ and $\ell(\gamma)$ be the length of γ . Use (1) to show that

$$|f(z_0)|^n \le \frac{1}{2\pi} \frac{M^n}{\mu} \ell(\gamma) \tag{2}$$

- (c) Take (real) $n^{ ext{th}}$ roots of both sides of (2) and then let $n o \infty$.
- 3. The power series $f(z) = \sum_{n=1}^{\infty} \frac{(z+1)^n}{(n+5)^3 3^n}$ defines a holomorphic function on the largest open disk $D[z_0, R]$ on which it converges. Determine the center and radius of this disk.
- 4. For each of the following, determine the largest open disk on which the Taylor series converges

(a)
$$\frac{\sin z}{z^2 + 4}$$
 about $z = 0$.
(b) $\frac{e^z}{z^2 - z}$ about $z = 4i$.

- 5. Determine the Taylor series for $f(z) = \sinh(z) \cosh(z)$ about z = 0 and state the radius of convergence.
- 6. Find a Laurent series expansion for $f(z) = \frac{e^{(z^2)}}{z^3}$ about z = 0.