p. 1 of 1

1. Compute the following integrals. In some cases you must find a suitable parametrization for the given contour:

(a)
$$\int_{\gamma} (\operatorname{Im}(z))^2 dz$$
 where $\gamma(t) = 3t + 2it$, $-2 \le t \le 2$.

(b) $\int_{\gamma} \frac{z+1}{\overline{z}} \, dz$ where γ is the right half of the unit circle from -i to i .

(c)
$$\int_{\gamma} |z|^2 \, dz$$
 where $\gamma(t) = t^2 + rac{i}{t}$, $1 \leq t \leq 2$.

- (d) $\int_{\gamma}e^{\overline{z}}\,dz$ where γ consists of the line segment from z=0 to z=2 followed by the line segment from z=2 to $z=1+\pi i$.
- (e) $\int_{\gamma} \text{Re}(z) dz$ where γ is the circle of radius 2 with positive orientation.
- 2. Compute the following integrals. Explain your reasoning, especially if relying on the path independence theorem.

(a)
$$\int_{\gamma} 2z\,dz$$
 where $\gamma(t)=2\cos^3\left(\pi t
ight)-i\sin^2\left(\pi t/4
ight)$, $0\leq t\leq 2$.

(b)
$$\int_{\gamma} \frac{1}{z} dz$$
 where γ is the right half of the unit circle from $-i$ to i .

(c)
$$\int_{\gamma} \frac{1}{z} dz$$
 where γ is the left half of the unit circle from $-i$ to i .

(d)
$$\int_{\gamma}z\sin{(z^2)}\,dz$$
 where γ is the spiral $\gamma(t)=te^{it}$, $0\leq t\leq 8\pi$.

posted Fri Mar 8 2019