1. Express each of the following complex numbers in the form a + ib with a and b real:

(a)
$$\frac{(8+2i)-(1-i)}{(2+i)^2}$$

(b)
$$(2+i)(-1-i)(3-2i)$$

- 2. Let z be a complex number with Im(z) > 0. Prove that Im(1/z) < 0.
- 3. Let z = 3 2i. Plot the points z, -z, \overline{z} , $-\overline{z}$ and 1/z in the complex plane.
- 4. Sketch and describe the set of points in the complex plane that satisfies each of the following:
 - (a) |2z i| = 4
 - (b) |z| = Re(z) + 2
 - (c) $\operatorname{Re}(z) \geq 4$
- 5. Prove that if $(\overline{z})^2 = z^2$ then z is either pure real or pure imaginary.
- 6. Let z = 2 i and w = 1 + i. Sketch each of the following vectors.
 - (a) z + w
 - (b) *z w*
 - (c) 2z 3w
- 7. Find $\arg(z)$ for each of the following where $0 \leq \arg(z) < 2\pi$
 - (a) z = -6 6i

(b)
$$z = \sqrt{3} - i$$

- 8. Express each of the following in the form a + bi where $a, b \in \mathbb{R}$:
 - (a) $\frac{e^{3i} e^{-3i}}{2i}$ (b) $2e^{3+i\pi/6}$
- 9. Express each of the following complex numbers in exponential form $re^{i\theta}$ with r > 0 and $0 \le \theta < 2\pi$:

(a)
$$(\cos(2\pi/9) + i\sin(2\pi/9))^3$$

(b) $\frac{2+2i}{-\sqrt{3}+i}$

10. Show that $|e^z| \leq 1$ for all complex numbers z with $\operatorname{Re}(z) \leq 0$.