Math 372 - Introductory Complex Variables

Overview of Series

Mar 25 2019

Recap of Last Day

▶ **Theorem:** If *f* is holomorphic inside a region *G* containing the simple closed piecewise smooth positively oriented *G*-contractible path γ and *z* is inside γ then

$$
f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z)^{n+1}}\,d\zeta
$$

▶ Consequently: If *f* is holomorphic inside the region *G*, then $f'(z)$, $f''(z)$, $f'''(z)$, ... all exist for $z \in G$.

Liouville's Theorem

Theorem: A bounded entire function is a constant.

Proof: Suppose that *f* is entire and that $|f(z)| \leq M$ for every *z* $\in \mathbb{C}$. Let *z* $\in \mathbb{C}$. Then for any *R* $>$ 0,

$$
f'(z)=\frac{1}{2\pi i}\int_{C[z,R]}\frac{f(\zeta)}{(\zeta-z)^2}\,d\zeta
$$

On $C[z, R]$, ^{) | (}
2π*R*.Therefore *f*(ζ) $(\zeta - z)^2$ $\begin{array}{c} \hline \end{array}$ ≤ *M* $\frac{m}{R^2}$, and the length of *C*[*z*, *R*] is

$$
|f'(z)|\leq \frac{1}{2\pi}\left(\frac{M}{R^2}\right)(2\pi R)=\frac{M}{R}
$$

This is true for every $R > 0$; now let $R \to \infty$ to find $f'(z) = 0$ for every $z \in \mathbb{C}$.

[Overview of Series](#page-3-0)

Series: Basic Idea

- \triangleright We know from real variable theory that many functions can be expressed as infinite series.
- \blacktriangleright For example,

$$
e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots
$$

$$
= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

 \triangleright To what extent does this theory extend to complex variables? Many of the definitions and theorems are similar. . .

Definitions

Definition: A series is a sum

$$
c_0 + c_1 + c_2 + \cdots = \sum_{k=0}^{\infty} c_k
$$
 where the terms $c_k \in \mathbb{C}$

• The
$$
n^{\text{th}}
$$
 partial sum is $S_n = \sum_{k=0}^{n} c_k$.

► If $\lim_{n\to\infty} S_n$ exists and equals *S* (say), we say that $\sum_{n=1}^{n} c_k$ *k*=0 $\frac{1}{\text{converges}}$ to S and we write $S = \sum_{k=1}^\infty c_k$ *k*=0

If $\lim_{n \to \infty} S_n$ does not exist say the series diverges. *n*→∞

The Geometric Series

Theorem: Suppose
$$
|z| < 1
$$
. Then $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$
Proof:

$$
S_n = 1 + z + z^2 + \dots + z^{n-1} + z^n
$$

\n
$$
zS_n = z + z^2 + \dots + z^{n-1} + z^n + z^{n+1}
$$

\n
$$
S_n - zS_n = 1 - z^{n+1}
$$

\n
$$
S_n(1-z) = 1 - z^{n+1}
$$

\n
$$
S_n = \frac{1 - z^{n+1}}{1 - z}
$$

continued. . .

An Important Series, continued

Now let $n \to \infty$, so that $|z^{n+1}| = |z|^{n+1} \to 0$ since $|z| < 1$, leaving

$$
\lim_{n\to\infty} S_n = \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}
$$

Convergence Tests

 \blacktriangleright Many convergence results for series of real terms extend to those with complex terms and the proofs are similar.

▶ The Comparison Test: Suppose $|c_k|$ $\leq M_k$ for all $k \geq K$ (that is, eventually all of the *c^k* terms have modulus bounded by real numbers *M^k* .) Then if $\sum^{\infty} M_k$ converges so does $\sum^{\infty} c_k$. $k=0$ *k*=0

continued. . .

Convergence Tests, continued

▶ The Ratio Test: Suppose the series $\sum^{\infty} c_k$ is such that $k=0$ lim *k*→∞ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *ck*+¹ *ck* $\Big| = L$. Then

(i) If $L < 1$ the series converges

(ii) If $L > 1$ the series diverges

(iii) If $L = 1$ the test is inconclusive

Convergence Examples

Example: Determine the sum
$$
\sum_{k=0}^{\infty} \frac{3}{(1+i)^k}
$$

Convergence Examples

Convergence Examples

Example: Determine the largest open disk *D*[*i*, *r*] on which \sum^{∞} *k*=0 $(z - i)^k$ $\frac{1}{2^k}$ converges.

Absolute Convergence

► **Definition:** The series
$$
\sum_{k=0}^{\infty} c_k
$$
 is called absolutely convergent if $\sum_{k=0}^{\infty} |c_k|$ converges.

By the comparison test, taking $M_k = |c_k|$,

$$
\sum_{k=0}^{\infty} |c_k| \text{ convergent} \implies \sum_{k=0}^{\infty} c_k \text{ convergent}
$$

That is, absolute convergence implies convergence.

Pointwise Convergence

 \triangleright Consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer *n* and $z \in \mathbb{C}$.

For example: $F_n(z) = \sum_{k=1}^{n} z^k = \frac{1 - z^{n+1}}{1 - z^n}$ *k*=0 $\frac{1}{1-z}$, and *T* is the disk $|z|$ < 1.

- If for each $z \in \mathbb{C}$, $\lim_{n \to \infty} F_n(z)$ exists and equals $F(z)$, we say that *Fⁿ* converges pointwise to *F*.
- \triangleright **Definition:** F_n converges pointwise to F on T if for each $z \in T$, given $\epsilon > 0$ there is a natural number N (possibly depending on both ϵ and *z*) such that if $n > N$ then $|F_n(z) - F(z)| < \epsilon$.

Pointwise Convergence, Continued

For example, we saw that for
$$
F_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}
$$
,

$$
F(z) = \frac{1}{1 - z}
$$
, and again T is the disk $|z| < 1$.

► Notice: $|F_n(z) - F(z)| =$   In order to make this difference small, *n* must be chosen *z n*+1 1 − *z*    depends on both *n* and *z*. with reference to the particular *z* being considered.

$$
\blacktriangleright
$$
 Here $F_n(z) \to F(z)$ pointwise on T

Uniform Convergence

 \triangleright Again consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer *n* and $z \in \mathbb{C}$.

Definition: F_n converges uniformly to F on T if given $\epsilon > 0$ there is a natural number N (possibly depending on ϵ but not on any particular *z*) such that if $n > N$ then for any $z \in \mathcal{T}$, $|F_n(z) - F(z)| < \epsilon$.

I Roughly speaking, if $F_n \to F$ uniformly, for *n* large enough the difference $|F_n(z) - F(z)|$ will be small for every $z \in T$.

Uniform Convergence, Continued

► Again consider
$$
F_n(z) = \sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}
$$
 and

$$
F(z) = \frac{1}{1 - z}
$$
, but this time let *T* be the disk $|z| < 1/2$.

 \blacktriangleright Again

$$
|F_n(z)-F(z)|=\left|\frac{z^{n+1}}{1-z}\right|<\frac{(1/2)^{n+1}}{(1/2)}=\frac{1}{2^n}
$$

 \triangleright Notice: $|F_n(z) - F(z)|$ is bounded by an expression which is independent of *z* and which goes to zero as $n \to \infty$: $F_n \rightarrow F$ uniformly on *T*.

[Taylor Series](#page-18-0)

Taylor Series Definition

 \triangleright **Definition:** Suppose *f* is holomorphic at z_0 . Then

$$
\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z-z_0)^j
$$

is called the Taylor Series for f around z_0 .

If $z_0 = 0$ the series above is instead called a Maclaurin **Series**

Taylor Series Example

Example: Construct the Maclaurin series for $f(z) = e^z$

 ${\sf Solution}\colon f(0)=f'(0)=f''(0)=f'''(0)=\cdots=e^0=1,$ so the Maclaurin series is

$$
\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} z^j = \sum_{j=0}^{\infty} \frac{1}{j!} z^j = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots
$$

The Main Result

- \triangleright Under what conditions is a function equal to its Taylor series?
- **In Theorem:** If *f* is holomorphic in an open disk $D[z_0, R]$, then

$$
f(z) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j
$$

for every $z \in D[z_0, R]$.

Furthermore, the series converges uniformly in any closed subdisk $\overline{D}[z_0,R']$ where $R' < R$.

 \triangleright Consequently, the Taylor series will converge to $f(z)$ everywhere inside the largest disk centred at z_0 over which *f*(*z*) is holomorphic.

Proof in the case
$$
Z_0 = 0
$$

\nLet $\gamma = C[z_0, (R' + R)/2]$.
\nFor any z in $\overline{D}[z_0, R']$,
\n
$$
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta
$$
\n
$$
= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left[\frac{1}{\zeta} \cdot \frac{1}{1 - z/\zeta} \right] d\zeta \quad \text{Notice } |z/\zeta| < 1
$$
\n
$$
= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left[\frac{1}{\zeta} \cdot \left(\sum_{j=0}^{n} (z/\zeta)^{j} + \frac{(z/\zeta)^{n+1}}{1 - z/\zeta} \right) \right] d\zeta
$$

23 / 26

Proof in the case $z_0 = 0$, continued

Splitting this last expression:

$$
\sum_{j=0}^{n} \frac{z^{j}}{j!} \left(\frac{j!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta^{j+1}} d\zeta \right) + \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta
$$

$$
\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} z^{j} + \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta
$$

Notice: as $n \to \infty$ the first sum becomes the desired Taylor series.

It remains to show that

=

$$
\lim_{n\to\infty}\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\cdot\left(\frac{z}{\zeta}\right)^{n+1}d\zeta=0
$$

Proof in the case $z_0 = 0$, continued 1 2π*i* Z γ *f*(ζ) $\frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)$ ζ $\int^{n+1} d\zeta$ 0° *z R*′ γ *R* On γ , $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ 1 ζ − *z* $\leq \frac{1}{\sqrt{B+B'}}$ $\frac{1}{\left(\frac{R+R'}{2}-R'\right)}=\frac{2}{R-1}$ *R* − *R*⁰ and

$$
\left|\frac{z}{\zeta}\right|^{n+1} = \frac{|z|^{n+1}}{|\zeta|^{n+1}} \le \left[\frac{R'}{\left(\frac{R'+R}{2}\right)}\right]^{n+1} = \left(\frac{2R'}{R'+R}\right)^{n+1} = \alpha^{n+1}
$$

where $\alpha < 1$

Proof in the case $z_0 = 0$, continued

Using these bounds we have

$$
\left|\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\cdot\left(\frac{z}{\zeta}\right)^{n+1}d\zeta\right|
$$

$$
\leq \frac{1}{2\pi} \max_{\zeta \in \gamma} |f(\zeta)| \left(\frac{2}{R-R'}\right) \alpha^{n+1}
$$

$$
\rightarrow \ 0 \text{ as } n \rightarrow \infty
$$