Math 372 - Introductory Complex Variables

Overview of Series

Mar 25 2019

Recap of Last Day

Theorem: If *f* is holomorphic inside a region *G* containing the simple closed piecewise smooth positively oriented *G*-contractible path *γ* and *z* is inside *γ* then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

► Consequently: If *f* is holomorphic inside the region *G*, then $f'(z), f''(z), f'''(z), \dots$ all exist for $z \in G$.

Liouville's Theorem

Theorem: A bounded entire function is a constant.

Proof: Suppose that *f* is entire and that $|f(z)| \le M$ for every $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. Then for any R > 0,

$$f'(z) = \frac{1}{2\pi i} \int_{C[z,R]} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta$$

On C[z, R], $\left|\frac{f(\zeta)}{(\zeta - z)^2}\right| \le \frac{M}{R^2}$, and the length of C[z, R] is $2\pi R$. Therefore

$$|f'(z)| \leq rac{1}{2\pi}\left(rac{M}{R^2}
ight)(2\pi R) = rac{M}{R}$$

This is true for every R > 0; now let $R \to \infty$ to find f'(z) = 0 for every $z \in \mathbb{C}$.

Overview of Series

Series: Basic Idea

- We know from real variable theory that many functions can be expressed as infinite series.
- ► For example,

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

= $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

To what extent does this theory extend to complex variables? Many of the definitions and theorems are similar...

Definitions

Definition: A series is a sum

$$c_0+c_1+c_2+\cdots=\sum_{k=0}^\infty c_k$$
 where the terms $c_k\in\mathbb{C}$

• The *n*th partial sum is
$$S_n = \sum_{k=0}^n c_k$$
.

• If $\lim_{n \to \infty} S_n$ exists and equals S (say), we say that $\sum_{k=0} c_k$ converges to S and we write $S = \sum_{k=0}^{\infty} c_k$

• If $\lim_{n\to\infty} S_n$ does not exist say the series diverges.

The Geometric Series

Theorem: Suppose
$$|z| < 1$$
. Then $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$
Proof:

$$S_{n} = 1 + z + z^{2} + \dots + z^{n-1} + z^{n}$$

$$zS_{n} = z + z^{2} + \dots + z^{n-1} + z^{n} + z^{n+1}$$

$$S_{n} - zS_{n} = 1 - z^{n+1}$$

$$S_{n} (1 - z) = 1 - z^{n+1}$$

$$S_{n} = \frac{1 - z^{n+1}}{1 - z}$$

continued...

An Important Series, continued

Now let $n \to \infty$, so that $|z^{n+1}| = |z|^{n+1} \to 0$ since |z| < 1, leaving

$$\lim_{n\to\infty}S_n=\sum_{k=0}^{\infty}z^k=\frac{1}{1-z}$$

Convergence Tests

Many convergence results for series of real terms extend to those with complex terms and the proofs are similar.

The Comparison Test: Suppose |c_k| ≤ M_k for all k ≥ K (that is, eventually all of the c_k terms have modulus bounded by real numbers M_k.)
 Then if ∑_{k=0}[∞] M_k converges so does ∑_{k=0}[∞] c_k.

continued...

Convergence Tests, continued

► The Ratio Test: Suppose the series $\sum_{k=0}^{\infty} c_k$ is such that $\lim_{k \to \infty} \left| \frac{c_{k+1}}{c_k} \right| = L$. Then

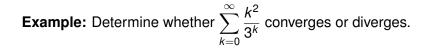
- (i) If L < 1 the series converges
- (ii) If L > 1 the series diverges

(iii) If L = 1 the test is inconclusive

Convergence Examples

Example: Determine the sum
$$\sum_{k=0}^{\infty} \frac{3}{(1+i)^k}$$

Convergence Examples



Convergence Examples

Example: Determine the largest open disk D[i, r] on which $\sum_{k=0}^{\infty} \frac{(z-i)^k}{2^k}$ converges.

Absolute Convergence

• **Definition:** The series
$$\sum_{k=0}^{\infty} c_k$$
 is called absolutely convergent if $\sum_{k=0}^{\infty} |c_k|$ converges.

• By the comparison test, taking $M_k = |c_k|$,

$$\sum_{k=0}^{\infty} |c_k|$$
 convergent $\implies \sum_{k=0}^{\infty} c_k$ convergent

That is, absolute convergence implies convergence.

Pointwise Convergence

► Consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer n and $z \in \mathbb{C}$.

For example: $F_n(z) = \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$, and *T* is the disk |z| < 1.

- ▶ If for each $z \in \mathbb{C}$, $\lim_{n \to \infty} F_n(z)$ exists and equals F(z), we say that F_n converges pointwise to F.
- ▶ **Definition:** F_n converges pointwise to F on T if for each $z \in T$, given $\epsilon > 0$ there is a natural number N (possibly depending on both ϵ and z) such that if n > N then $|F_n(z) F(z)| < \epsilon$.

Pointwise Convergence, Continued

For example, we saw that for
$$F_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}$$
,
 $F(z) = \frac{1}{1 - z}$, and again *T* is the disk $|z| < 1$.

Notice: $|F_n(z) - F(z)| = \left|\frac{z^{n+1}}{1-z}\right|$ depends on both *n* and *z*. In order to make this difference small, *n* must be chosen with reference to the particular *z* being considered.

• Here
$$F_n(z) \rightarrow F(z)$$
 pointwise on T

Uniform Convergence

Again consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer n and $z \in \mathbb{C}$.

- ▶ **Definition:** F_n converges uniformly to F on T if given $\epsilon > 0$ there is a natural number N (possibly depending on ϵ but not on any particular z) such that if n > N then for any $z \in T$, $|F_n(z) F(z)| < \epsilon$.
- ▶ Roughly speaking, if $F_n \rightarrow F$ uniformly, for *n* large enough the difference $|F_n(z) F(z)|$ will be small for every $z \in T$.

Uniform Convergence, Continued

Again consider
$$F_n(z) = \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$$
 and $F(z) = \frac{1}{1-z}$, but this time let *T* be the disk $|z| < 1/2$.

Again

1

$$|F_n(z) - F(z)| = \left|\frac{z^{n+1}}{1-z}\right| < \frac{(1/2)^{n+1}}{(1/2)} = \frac{1}{2^n}$$

Notice: |*F_n*(*z*) − *F*(*z*)| is bounded by an expression which is independent of *z* and which goes to zero as *n* → ∞: *F_n* → *F* uniformly on *T*.

Taylor Series

Taylor Series Definition

Definition: Suppose *f* is holomorphic at *z*₀. Then

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z-z_0)^j$$

is called the Taylor Series for f around z_0 .

If z₀ = 0 the series above is instead called a Maclaurin Series

Taylor Series Example

Example: Construct the Maclaurin series for $f(z) = e^{z}$

Solution: $f(0) = f'(0) = f''(0) = f'''(0) = \dots = e^0 = 1$, so the Maclaurin series is

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} z^{j} = \sum_{j=0}^{\infty} \frac{1}{j!} z^{j} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

The Main Result

- Under what conditions is a function equal to its Taylor series?
- **Theorem:** If *f* is holomorphic in an open disk $D[z_0, R]$, then

$$f(z) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j$$

for every $z \in D[z_0, R]$.

Furthermore, the series converges uniformly in any closed subdisk $\overline{D}[z_0, R']$ where R' < R.

Consequently, the Taylor series will converge to f(z) everywhere inside the largest disk centred at z₀ over which f(z) is holomorphic.

Proof in the case
$$z_0 = 0$$

Let $\gamma = C[z_0, (R' + R)/2]$.
For any z in $\overline{D}[z_0, R']$,
 $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$
 $= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left[\frac{1}{\zeta} \cdot \frac{1}{1 - z/\zeta} \right] d\zeta$ } notice $|z/\zeta| < 1$
 $= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left[\frac{1}{\zeta} \cdot \left(\sum_{j=0}^{n} (z/\zeta)^j + \frac{(z/\zeta)^{n+1}}{1 - z/\zeta} \right) \right] d\zeta$

Proof in the case $z_0 = 0$, continued

Splitting this last expression:

$$\sum_{j=0}^{n} \frac{z^{j}}{j!} \left(\frac{j!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta^{j+1}} d\zeta \right) + \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta$$
$$= \sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} z^{j} + \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta$$

Notice: as $n \to \infty$ the first sum becomes the desired Taylor series.

It remains to show that

$$\lim_{n\to\infty}\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\cdot\left(\frac{z}{\zeta}\right)^{n+1}\,d\zeta=0$$

Proof in the case $z_0 = 0$, continued $\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta}\right)^{n+1} d\zeta$ z On γ , $\left|\frac{1}{\zeta-z}\right| \leq \frac{1}{\left(\frac{R+R'}{2}-R'\right)} = \frac{2}{R-R'}$

and

$$\left|\frac{z}{\zeta}\right|^{n+1} = \frac{|z|^{n+1}}{|\zeta|^{n+1}} \le \left[\frac{R'}{\left(\frac{R'+R}{2}\right)}\right]^{n+1} = \left(\frac{2R'}{R'+R}\right)^{n+1} = \alpha^{n+1}$$

where $\alpha < 1$

Proof in the case $z_0 = 0$, continued

Using these bounds we have

$$\left|\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\cdot\left(\frac{z}{\zeta}\right)^{n+1}\,d\zeta\right|$$

$$\leq \quad rac{1}{2\pi} \max_{\zeta \in \gamma} |f(\zeta)| \left(rac{2}{R-R'}
ight) lpha^{n+1}$$

$$ightarrow$$
 0 as $n
ightarrow\infty$