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Power and Laurent Series
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Taylor Series Example

Example: Find the Taylor series about z = 0 (i.e. the Maclaurin
series) for Log(1 — z) and determine the disk over which is it
valid.
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Important Taylor (Maclaurin) Series
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Power Series
» Power series about zg: Z a(z — z)
j=0
» Theorem: For each power series there is a real number

0 < R < oo called the radius of convergence such that the
series

» converges for |z — 25| < R
» converges uniformly for |z — z| < R' < R

> diverges for |z —z| > R

5/16



Power Series continued

» As a consequence of the uniform convergence,
[e.e]

f(z) = _ aj(z — zo) defines a holomorphic function on
j=0
the disk D[zo, ]

© . &)
» Furthermore, if f(z) = Z aj(z— zp), then a; = j(|Zo).
j=0 '
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Power Series and Uniform Convergence

n
> Letting f2(2) = _ aj(z — z0), a power series is really just
j=0
lim f,(z), and the results on power series follow from:
n—oo

» Theorem: If each f, is continuous on a region G,
n=1,2,...,and f, — f uniformly on G, then f is
continuous on G.

» Theorem: If f, is continuouson G, n=1,2,...,and f, — f
uniformly on G, then / fn(z)dz — / f(z) dz for every v in

Y ol
G.

» Theorem: If each f, is holomorphic in a region G in which

all closed piecewise simple smooth paths are

G-contractible, n=1,2,..., and f, — f uniformly on G,
then f is holomorphic on G.
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Operations with Power Series

» Theorem: A power series can be integrated and
differentiated termwise within its radius of convergence.

» Theorem: Suppose f(z Zaj (z - z) and
j=0

9(2) =Y bj(z — zp) define holomorphic functions about
j=0
29, then
(i) cf(z anj (z- zo) where ¢ is a constant
j=0

(i) (F+9)(2) =) (a+b)(z—2z)
Jj=0
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Operations with Power Series, continued

Theorem: If f(z Zaj z - 7)Y and g(z ij z - zp)

j=0
define holomorphic function about zy, then fg i |s holomorphlc at
Zp and
2) =Y ¢(z—z)
j=0
where

J
Cj = Z aj,kb,-
k=0
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Example

Example: Find the Taylor series about z = 0 (i.e. the Maclaurin
series) for f(z) = e~Z* and state the radius of convergence.
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Example

Example: Find the Taylor series about z = 0 (i.e. the Maclaurin
series) for f(z) = 5> and state the radius of convergence.

z
(1-2)
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Laurent Series

» Definition: A point z; is a singularity of f if f is not
holomorphic at zy but z; is the limit of a sequence of points
at which f is holomorphic.

Z

» For example, f(z) = has a singularity at z = .

Z—i

» Can we find a Taylor-series-like representation of a
function about its singularities?
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Laurent Series, continued

Theorem: Suppose f is holomorphic ‘Q

on the annulus (washer shaped re-
gion) r < |z — z5| < R:

Then f can be expressed as

f(z) = > a(z-z) +Za_/z 7))~/ (1)
j=0 j=1

_ Z ai(z — 25, where... (2)

j=—oco
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Laurent Series, continued

» the series (1) convergesonr < |z—z| <R
» convergence is uniformon r < p; < |z — z| < p» < R, and

» the coefficients g; are given by

1 f(<)
Y= 27”/0 (¢ — Zo) %

where C is any positively oriented simple closed contour
lying inside the annulus and containing zj.
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Laurent Series, continued

Furthermore, if for r < R we have series such that

oo
> > 3i(z — 20)' converges for |z - z| < R , and
j=0
o0 .
> Y a j(z— zy) converges for |z — zp| > r
=

then

o0

(2)= ) alz—2z)

j==o0

defines a holomorphic function on r < |z — Zy| < R with

1 f©
Y 2ni Jo [z
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Laurent Series, continued

» A Laurent series can often be constructed using known
series, as opposed to resorting to contour integrals for
determining the coefficients.

» For this purpose, it is useful to recall the geometric series

for |z] < 1:
1 N
- j
1—2_Zz
j=0
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