Continuity and the Derivative

Jan 28 2019

Limits

Recall...

• **Definition:** Let $f : G \to \mathbb{C}$ and z_0 be an accumulation point of *G*. Then

$$\lim_{z\to z_0}f(z)=w_0$$

if for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |z - z_0| < \delta$ then $|f(z) - w_0| < \epsilon$.

į

 Limit laws for sums, differences, products, powers similar to those for real functions.

Continuous Functions

▶ **Definition:** Let $f : G \to \mathbb{C}$ and $z_0 \in G$. If z_0 is an isolated point of *G* or if

$$\lim_{z\to z_0}f(z)=f(z_0)$$

then *f* is continuous at z_0 .

- That is, *f* is continuous at z₀ if for every ε > 0 there is a δ > 0 such that if 0 < |z − z₀| < δ then |f(z) − f(z₀)| < ε.</p>
- ► *f* is continuous on a set *G* if it is continuous at every $z_0 \in G$.

Continuous Functions, continued

By the limit laws, sums, differences, products and quotients of continuous functions are again continuous on their domains. In particular...

Theorem:

1. Polynomial functions

$$p(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1}, \ a_i \in \mathbb{C}, \ n \in \mathbb{N}$$

are continuous on $\ensuremath{\mathbb{C}}$.

2. Rational functions $R(z) = \frac{p(z)}{q(z)}$ where p(z) and q(z) are polynomials are continuous at each $z_0 \in \mathbb{C}$ provided $q(z_0) \neq 0$.

Continuous Functions, continued

Theorem: (Continuous functions of continuous functions are continuous)

Suppose $g : G \to \mathbb{C}$ and $f : H \to \mathbb{C}$ are both continuous on their domains, and that $g(G) \subset H$. If $z_0 \in G$ with $\lim_{z \to z_0} g(z) = w_0 \in H$, then $\lim_{z \to z_0} f(g(z)) = f(w_0)$. That is,

$$\lim_{z\to z_0} f(g(z)) = f(\lim_{z\to z_0} g(z))$$

Continuous Functions, continued

Proof: Let $\epsilon > 0$ be given.

Since $\lim_{w\to w_0} f(w) = f(w_0)$ by the continuity of f, there is $\delta_1 > 0$ such that $0 < |w - w_0| < \delta_1 \implies |f(w) - f(w_0)| < \epsilon$.

Since
$$\lim_{z\to z_0} g(z) = w_0$$
, for $\delta_1 > 0$ there is a $\delta_2 > 0$
 $0 < |z - z_0| < \delta_2 \implies |g(z) - w_0| < \delta_1$.

Take $\delta = \delta_2$. Then if $0 < |z - z_0| < \delta$, $|g(z) - w_0| < \delta_1$, so that $|f(g(z)) - f(w_0)| = |f(g(z)) - f(g(z_0))| < \epsilon$

The Derivative

Definition: Suppose *f* : *G* → C and *z*₀ is an interior point of *G*. The derivative of *f* at *z*₀ is

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

if this limits exists. If so, f is said to be differentiable at z_0 .

If f is differentiable at each point of some D[z₀, r] ⊂ G then f is holomorphic at z₀.

The Derivative, continued

A function differentiable (resp. holomorphic) on a set is differentiable (resp. holomorphic) at each point of the set.

• A function holomorphic on \mathbb{C} is called entire.

The definition of the derivative can instead be expressed

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

where $h \in \mathbb{C}$.

Derivative Rules

Theorem: Let *f* and *g* be differentiable at *z*, *h* differentiable at g(z), and $a, b \in \mathbb{C}$. Then

1.
$$(af(z) + bg(z))' = af'(z) + bg'(z)$$

2.
$$(f(z)g(z))' = f'(z)g(z) + f(z)g'(z)$$

3.
$$\left(\frac{f(z)}{g(z)}\right)' = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}$$

4.
$$(h(g(z)))' = h'(g(z) \cdot g'(z))$$

5.
$$(z^n)' = nz^{n-1}$$
 for $n \in \mathbb{Z} \setminus \{0\}$

Proof of Power Rule for $n \ge 1$

Let $f(z) = z^n$. If n = 1 the result is trivial. For $n \ge 2$,

$$(z^{n})' = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

$$= \lim_{h \to 0} \frac{(z+h)^{n} - z^{n}}{h}$$

$$= \lim_{h \to 0} \frac{z^{n} + nz^{n-1}h + (\text{terms with a factor of } h^{2}) + \dots - z^{n}}{h}$$

$$= \lim_{h \to 0} nz^{n-1} + (\text{terms with factor of } h)$$

$$= nz^{n-1}$$