Continuity and the Derivative

Jan 28 2019

Limits

Recall...

Definition: Let $f : G \to \mathbb{C}$ and z_0 be an accumulation point of *G*. Then

 $\lim_{z\to z_0} f(z) = w_0$

if for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |z - z_0| < \delta$ then $|f(z) - w_0| < \epsilon$.

 \blacktriangleright Limit laws for sums, differences, products, powers similar to those for real functions.

Continuous Functions

▶ **Definition:** Let f : $G \rightarrow \mathbb{C}$ and $z_0 \in G$. If z_0 is an isolated point of *G* or if

$$
\lim_{z\to z_0}f(z)=f(z_0)
$$

then f is continuous at z_0 .

- In That is, f is continuous at z_0 if for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |z - z_0| < \delta$ then $|f(z) - f(z_0)| < \epsilon$.
- \blacktriangleright *f* is continuous on a set *G* if it is continuous at every $z_0 \in G$.

Continuous Functions, continued

 \triangleright By the limit laws, sums, differences, products and quotients of continuous functions are again continuous on their domains. In particular...

F Theorem:

1. Polynomial functions

$$
p(z)=a_0+a_1z+\cdots+a_{n-1}z^{n-1}, a_i\in\mathbb{C}, n\in\mathbb{N}
$$

are continuous on C .

2. Rational functions $R(z) = \frac{p(z)}{q(z)}$ where $p(z)$ and $q(z)$ are polynomials are continuous at each $z_0 \in \mathbb{C}$ provided $q(z_0) \neq 0$.

Continuous Functions, continued

Theorem: (Continuous functions of continuous functions are continuous)

Suppose $g : G \to \mathbb{C}$ and $f : H \to \mathbb{C}$ are both continuous on their domains, and that $g(G) \subset H$. If $z_0 \in G$ with $\lim_{z \to z_0} g(z) = w_0 \in H$, then $\lim_{z \to z_0} f(g(z)) = f(w_0)$. That is,

$$
\lim_{z\to z_0}f(g(z))=f(\lim_{z\to z_0}g(z))
$$

Continuous Functions, continued

Proof: Let $\epsilon > 0$ be given.

Since $\lim_{w\to w_0} f(w) = f(w_0)$ by the continuity of f , there is $\delta_1 > 0$ such that $0 < |w - w_0| < \delta_1 \implies |f(w) - f(w_0)| < \epsilon$.

Since
$$
\lim_{z\to z_0} g(z) = w_0
$$
, for $\delta_1 > 0$ there is a $\delta_2 > 0$, $0 < |z - z_0| < \delta_2 \implies |g(z) - w_0| < \delta_1$.

Take $\delta = \delta_2$. Then if $0 < |z - z_0| < \delta$, $|g(z) - w_0| < \delta_1$, so that $|f(g(z)) - f(w_0)| = |f(g(z)) - f(g(z_0))| < \epsilon$

The Derivative

Definition: Suppose $f: G \to \mathbb{C}$ and z_0 is an interior point of *G*. The derivative of *f* at z_0 is

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

if this limits exists. If so, f is said to be differentiable at z_0 .

► If *f* is differentiable at each point of some $D[z_0, r] \subset G$ then f is holomorphic at z_0 .

The Derivative, continued

 \triangleright A function differentiable (resp. holomorphic) on a set is differentiable (resp. holomorphic) at each point of the set.

 \blacktriangleright A function holomorphic on $\mathbb C$ is called entire.

 \blacktriangleright The definition of the derivative can instead be expressed

$$
f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}
$$

where $h \in \mathbb{C}$.

Derivative Rules

Theorem: Let *f* and *g* be differentiable at *z*, *h* differentiable at *g*(*z*), and *a*, *b* \in \mathbb{C} . Then

1.
$$
(af(z) + bg(z))' = af'(z) + bg'(z)
$$

2.
$$
(f(z)g(z))' = f'(z)g(z) + f(z)g'(z)
$$

3.
$$
\left(\frac{f(z)}{g(z)}\right)' = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}
$$

4.
$$
(h(g(z)))' = h'(g(z) \cdot g'(z))
$$

5.
$$
(z^n)' = nz^{n-1}
$$
 for $n \in \mathbb{Z} \setminus \{0\}$

Proof of Power Rule for *n* ≥ 1

Let $f(z) = z^n$. If $n = 1$ the result is trivial. For $n \ge 2$,

$$
(z^n)' = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
$$

=
$$
\lim_{h \to 0} \frac{(z+h)^n - z^n}{h}
$$

=
$$
\lim_{h \to 0} \frac{z^n + nz^{n-1}h + (\text{terms with a factor of } h^2) + \dots - z^n}{h}
$$

=
$$
\lim_{h \to 0} nz^{n-1} + (\text{terms with factor of } h)
$$

=
$$
nz^{n-1}
$$