Powers and Roots

Jan 14 2019

Periodicity of the complex exponential

\blacktriangleright For $k \in \mathbb{Z}$,

$$
e^{i(\theta+2k\pi)}=e^{i\theta}e^{i2k\pi}=e^{i\theta}\cdot 1=e^{i\theta}
$$

Say that $e^{i\theta}$ is periodic with period 2π

Powers

For $n \in \mathbb{N}$ it is easy to define z^n :

$$
z=|z|e^{i\theta}
$$

so

$$
z^n = |z|^n e^{in\theta}
$$

► In fact, true for
$$
n \in \mathbb{Z}
$$
 if $z^{-n} = 1/z^n$.

 \blacktriangleright Value of z^n is the same regardless of choice of arg(*z*) used to specify θ :

$$
|z|^n e^{in(\theta+2k\pi)} = |z|^n e^{in\theta} e^{in2k\pi} = |z|^n e^{in\theta} \cdot 1
$$

Roots

 \blacktriangleright For roots of complex numbers there is more to consider.

- **Definition:** For $m \in \mathbb{N}$, ζ is an m^{th} root of *z* if $\zeta^m = z$
- **If** To find all m^{th} roots of a complex number $z = |z|e^{i\theta} \neq 0$, let $\zeta = \rho e^{i\phi}$ where $\rho > 0$.
- **P** Then we must have $\rho^m e^{im\phi} = |z| e^{i\theta}$

▶ So
$$
\rho = \sqrt[m]{|z|}
$$
 and $e^{im\phi} = e^{i\theta}$

Roots, continued

► So
$$
m\phi = \theta + 2k\pi
$$
, where $k \in \mathbb{Z}$

▶ So
$$
\phi = \frac{\theta}{m} + \frac{2k\pi}{m}
$$
, where $k \in \mathbb{Z}$

 \triangleright So all possible mth roots of *z* are given by

$$
\zeta = \sqrt[m]{|z|}e^{i(\theta + 2k\pi)/m}, \quad k \in \mathbb{Z}
$$

Roots, continued

Notice: for
$$
k = 0, 1, ..., m - 1
$$
 we have $0 \le \frac{2k\pi}{m} < 2\pi$

► So

$$
\zeta = \sqrt[m]{|z|}e^{i(\theta + 2k\pi)/m}, \quad k = 0, 1, ..., m - 1
$$

represents *m* distinct *m*th roots of *z*.

I Are these *m* roots the only ones? That is, what if *k* ≤ −1 or $k > m$?

Roots, continued

▶ By the Division Algorithm there are integers *q* and *r* such that $k = qm + r$ where $0 \le r \le m - 1$

 \triangleright So

$$
\zeta = \sqrt[m]{|z|} e^{i(\theta + 2k\pi)/m}
$$

\n
$$
= \sqrt[m]{|z|} e^{i(\theta + 2(qm+r)\pi)/m}
$$

\n
$$
= \sqrt[m]{|z|} e^{i(\theta + 2r\pi)/m} e^{i2qm\pi/m}
$$

\n
$$
= \sqrt[m]{|z|} e^{i(\theta + 2r\pi)/m}
$$

which, since $0 < r < m - 1$, is one of the roots we found already.

Roots, Conclusion

Figure 1 Theorem: Let $m > 1$ be an integer and $z = re^{i\theta}$ with r. $\theta \in \mathbb{R}$, and where θ is any valid choice of arg(*z*). The m^{th} roots of *z* are given by

$$
z^{1/m} = \sqrt[m]{|z|}e^{i(\theta + 2k\pi)/m}, \ \ k = 0, 1, \ldots, m-1
$$

▶ Corollary: If *m* and *n* are positive integers with no common factors, then $(z^{1/n})^m = (z^m)^{1/n}$ and this common number, denoted by *z m*/*n* is given by

$$
z^{m/n} = \sqrt[n]{|z|^m} e^{im(\theta + 2k\pi)/n}, \ \ k = 0, 1, \ldots, n-1
$$

Roots of Unity

Definition: Let $m \in \mathbb{N}$. if $\zeta \in \mathbb{C}$ has the property that $\zeta^m =$ 1 then ζ is called an m^th root of unity. If $\zeta^m =$ 1 but $\zeta^{\bm{k}}\neq\bm{1}$ for $\bm{k}=\bm{1},\bm{2},\ldots,\bm{m}-\bm{1}$ then ζ is said to be a primitive *m*th root of unity.

 \triangleright So the mth roots of unity are

$$
1^{1/m} = \sqrt[m]{|1|}e^{i(0+2k\pi)/m}, \quad k = 0, 1, \ldots, m-1
$$

which reduces to

$$
1^{1/m}=e^{i2k\pi/m},\ \ k=0,1,\ldots,m-1
$$

Roots of Unity

Letting $\omega_m = e^{i2\pi/m}$, notice that $\left\{1, \omega_m^1, \omega_m^2, \dots, \omega_m^{m-1}\right\}$ is the complete set of mth root of unity.