Powers and Roots

Jan 14 2019

Periodicity of the complex exponential

▶ For $k \in \mathbb{Z}$,

$$e^{i(heta+2k\pi)}=e^{i heta}e^{i2k\pi}=e^{i heta}ullet1=e^{i heta}$$

Say that $e^{i\theta}$ is periodic with period 2π

Powers

For $n \in \mathbb{N}$ it is easy to define z^n : $z = |z|e^{i heta}$ so

$$z^n = |z|^n e^{in\theta}$$

▶ In fact, true for
$$n \in \mathbb{Z}$$
 if $z^{-n} = 1/z^n$.

Value of zⁿ is the same regardless of choice of arg(z) used to specify θ:

$$|z|^{n}e^{in(\theta+2k\pi)}=|z|^{n}e^{in\theta}e^{in2k\pi}=|z|^{n}e^{in\theta}\cdot 1$$

Roots

For roots of complex numbers there is more to consider.

- **Definition:** For $m \in \mathbb{N}$, ζ is an m^{th} root of z if $\zeta^m = z$
- ► To find all m^{th} roots of a complex number $z = |z|e^{i\theta} \neq 0$, let $\zeta = \rho e^{i\phi}$ where $\rho > 0$.
- Then we must have $\rho^m e^{im\phi} = |z|e^{i\theta}$

• So
$$\rho = \sqrt[m]{|z|}$$
 and $e^{im\phi} = e^{i\theta}$

continued ...

Roots, continued

► So
$$m\phi = \theta + 2k\pi$$
, where $k \in \mathbb{Z}$

• So
$$\phi = \frac{\theta}{m} + \frac{2k\pi}{m}$$
, where $k \in \mathbb{Z}$

So all possible m^{th} roots of z are given by

$$\zeta = \sqrt[m]{|z|} e^{i(\theta + 2k\pi)/m}, \quad k \in \mathbb{Z}$$

continued ...

Roots, continued

► Notice: for
$$k = 0, 1, ..., m - 1$$
 we have $0 \le \frac{2k\pi}{m} < 2\pi$

► So
$$\zeta = \sqrt[m]{|z|} e^{i(\theta + 2k\pi)/m}, \ k = 0, 1, ..., m - 1$$

represents $m \frac{distinct}{distinct} m^{th}$ roots of z.

► Are these *m* roots the only ones? That is, what if k ≤ −1 or k ≥ m?

continued...

Roots, continued

By the Division Algorithm there are integers *q* and *r* such that *k* = *qm* + *r* where 0 ≤ *r* ≤ *m* − 1

So

$$\begin{aligned} \zeta &= \sqrt[m]{|z|} e^{i(\theta+2k\pi)/m} \\ &= \sqrt[m]{|z|} e^{i(\theta+2(qm+r)\pi)/m} \\ &= \sqrt[m]{|z|} e^{i(\theta+2r\pi)/m} e^{i2qm\pi/m} \\ &= \sqrt[m]{|z|} e^{i(\theta+2r\pi)/m} \end{aligned}$$

which, since $0 \le r \le m - 1$, is one of the roots we found already.

continued ...

Roots, Conclusion

▶ **Theorem:** Let $m \ge 1$ be an integer and $z = re^{i\theta}$ with r, $\theta \in \mathbb{R}$, and where θ is any valid choice of $\arg(z)$. The m^{th} roots of z are given by

$$z^{1/m} = \sqrt[m]{|z|} e^{i(\theta+2k\pi)/m}, \ k = 0, 1, \dots, m-1$$

Corollary: If m and n are positive integers with no common factors, then (z^{1/n})^m = (z^m)^{1/n} and this common number, denoted by z^{m/n} is given by

$$z^{m/n} = \sqrt[n]{|z|^m} e^{im(\theta+2k\pi)/n}, \ k = 0, 1, \dots, n-1$$

Roots of Unity

▶ **Definition:** Let $m \in \mathbb{N}$. if $\zeta \in \mathbb{C}$ has the property that $\zeta^m = 1$ then ζ is called an m^{th} root of unity. If $\zeta^m = 1$ but $\zeta^k \neq 1$ for k = 1, 2, ..., m - 1 then ζ is said to be a primitive m^{th} root of unity.

So the mth roots of unity are

$$1^{1/m} = \sqrt[m]{|1|} e^{i(0+2k\pi)/m}, \ k = 0, 1, \dots, m-1$$

which reduces to

$$1^{1/m} = e^{i2k\pi/m}, \ k = 0, 1, \dots, m-1$$

Roots of Unity

Letting $\omega_m = e^{i2\pi/m}$, notice that $\{1, \omega_m^1, \omega_m^2, \dots, \omega_m^{m-1}\}$ is the complete set of m^{th} root of unity.