Math 371 - Introductory Real Analysis

G.Pugh

Jan 18 2018

[Real Numbers](#page-1-0)

Ordered Sets

▶ **Definition:** A is an ordered set if there exists a relation "<" such that

(i) For any $x \in A$ and $y \in A$ exactly one of

$$
x < y, \quad x = y, \quad y < x
$$

is true.

(ii) If
$$
x < y
$$
 and $y < z$ then $x < z$

(iii) \leq, \geq, \geq have the standard meaning.

Examples: $N, \mathbb{Z}, \mathbb{Q}$ are ordered sets, but \mathbb{C} is not, nor is (Z/*n*Z).

Bounded Sets: Definitions

Let $E \subset A$ where A is an ordered set.

- **► Definition:** If there is $b \in A$ such that $x \leq b$ for every $x \in E$ we say that *E* is bounded above and *b* is an upper bound for *E*.
- ▶ **Definition:** If b_0 is an upper bound for *E* and $b_0 \leq b$ for every other upper bound b , then $b₀$ is called the least upper bound of *E* or the supremum of E, and we write

 b_0 = sup *E*, read "soup of *E*"

- ▶ **Definition:** If there is $a \in A$ such that $x \ge a$ for every $x \in E$ we say that *E* is bounded below and *a* is a lower bound for *E*.
- ▶ **Definition:** If a_0 is a lower bound for *E* and $a_0 > a$ for every other lower bound a , then $a₀$ is called the greatest lower bound of *E* or the infimum of E, and we write

$$
a_0 = \inf E, \qquad \text{read "inf of } E"
$$

Bounded Sets: Examples

Example: $E = \{2, 3, 4\} \subset \mathbb{N}$.

1 is a lower bound for *E*, as is 2. 10 is an upper bound for *E*, as is 1000.

But inf $E = 2$, sup $E = 4$

► Example: $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}$.

 $\inf E = 0 \notin E$, sup $E = 1 \in E$

► Example: $E = \left\{ \sum_{k=0}^{n} \frac{1}{k!} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}$.

inf $E = 1 \in E$, sup E does not exist in $\mathbb Q$ (sup $E = e$ in fact).

Least Upper Bound Property

► Definition: An ordered set A has the least upper bound property if every nonempty subset $E \subset A$ that is bounded above has a least upper bound in *A*.

That is, sup*E* exists and sup*E* ∈ *A*

- **Example:** We saw that $\mathbb Q$ does not have the least upper bound property since sup $\left\{\sum_{k=0}^n \frac{1}{k!} \mid n \in \mathbb{N}\right\} \not\in \mathbb{Q}$.
- \triangleright To handle limits we need to extend \oslash to a field which has the least upper bound property.

Fields

Definition: A field is a set F together with two operations $+$ and \cdot such that for any *x*, *y*, *z* \in *F*:

$$
1. \ \ x+y \in F
$$

2. $x + y = y + x$

3.
$$
(x + y) + z = x + (y + z)
$$

- 4. There exists a zero element $0 \in F$ such that $0 + x = x$
- 5. There exists an element $-x$ such that $x + (-x) = 0$
- 6. $x \cdot v \in F$

7.
$$
x \cdot y = y \cdot x
$$

$$
8. (x \cdot y) \cdot z = x \cdot (y \cdot z)
$$

9. There exists a unit element $1 \in F$ such that $1 \cdot x = x$

10. If $x \neq 0$ there exists an element $1/x$ such that $(1/x) \cdot x = 1$ 11. $x \cdot (y + z) = x \cdot y + x \cdot z$ 12. $1 \neq 0$

Examples of Fields

Familiar: $(\mathbb{Q}, +, \cdot)$ is a field

 \triangleright More unusual: Recall that for $a, p \in \mathbb{N}$, *a* mod *p* = remainder upon division of *a* by *p*

Let *p* be a prime number and $\mathbb{F} = \{1, 2, \ldots, p - 1\}.$

For $a, b \in \mathbb{F}$ define $a + b = a + b \mod p$

define *a* · ^F *b* = *ab* mod *p*

Then $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is a field

Ordered Fields

 \triangleright **Definition:** An ordered set F is an ordered field if

 \blacktriangleright *F* is a field (satisfies the field axioms),

$$
\blacktriangleright \; x < y \implies x + z < y + z
$$

$$
\blacktriangleright x > 0 \text{ and } y > 0 \implies xy > 0
$$

 \blacktriangleright $(\mathbb{Q}, +, \cdot)$ is an ordered field, but $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is not.

Ordered Fields

The usual notions of positive $(x > 0)$ and negative $(x < 0)$ are defined for ordered fields, and the familiar operations and results involving inequalities still hold:

Proposition: For $x, y, z \in F$ an ordered field,

$$
\bullet \ \ x>0 \implies -x<0
$$

$$
\blacktriangleright x > 0 \text{ and } y < z \implies xy < xz
$$

$$
\blacktriangleright x < 0 \text{ and } y < z \implies xy > xz
$$

$$
\blacktriangleright x \neq 0 \implies x^2 > 0
$$

$$
\blacktriangleright \ 0 < x < y \implies 0 < 1/y < 1/x
$$

The Real Numbers

- \triangleright **Theorem:** There exists a unique ordered field \mathbb{R} with the least upper bound property such that $\mathbb{Q} \subset \mathbb{R}$
- \triangleright **Note:** There are several techniques for constructing \mathbb{R} . Two of the more popular are construction using Cauchy sequences, and construction using Dedeking cuts.
- \blacktriangleright In summary:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

where $\mathbb O$ and $\mathbb R$ are ordered fields, but only $\mathbb R$ has the least upper bound property.

- \triangleright N, Z and Q are countably infinite, but R is uncountable.
- In The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.