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What is Real Analysis?

I Wikipedia: Real analysis. . . has its beginnings in the
rigorous formulation of calculus. It is a branch of
mathematical analysis dealing with the set of real numbers.
In particular, it deals with the analytic properties of real
functions and sequences, including convergence and limits
of sequences of real numbers, the calculus of the real
numbers, and continuity, smoothness and related
properties of real-valued functions.

I mathematical analysis: the branch of pure mathematics
most explicitly concerned with the notion of a limit, whether
the limit of a sequence or the limit of a function. It also
includes the theories of differentiation, integration and
measure, infinite series, and analytic functions.
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In other words. . .

I In calculus, we learn how to apply tools (theorems) to solve
problems (optimization, related rates, linear
approximation.)

I In real analysis, we very carefully prove these theorems to
show that they are indeed valid.
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Thinking back to calculus. . .

I Most every important concept was defined in terms of
limits: continuity, the derivative, the definite integral

I But, the notion of the limit itself was rather vague

I For example,

lim
x→0

sin x
x

= 1

means

sin (x)/x gets close to 1 as x gets close to 0.
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The key notion

I The key and subtle concept that makes calculus work is
that of the limit

I Notion of a limit was truly a major advance in mathematics.
Instead of thinking of numbers as only those quantities that
could be calculated in a finite number of steps, a number
could be viewed as the result of a process, a target
reachable after an infinite number of steps.
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What makes analysis different

I In the words of the author: “In algebra, we prove equalities
directly. That is, we prove that an object (a number
perhaps) is equal to another object. In analysis, we
generally prove inequalities.”

I To illustrate: Suppose x is a real number.

If 0 ≤ x < ε for every real number ε > 0, then x = 0.

That is, to show that a positive number is zero, it is enough
to show that it is less than any other positive real number.
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Example of a major result using analysis

Theorem (Fourier): Suppose f is a continuous function
defined on the real numbers such that f (x + 2π) = f (x) for
every x , and suppose that f ′ is also continuous. Then

f (x) =
a0

2
+ [a1 cos (x) + b1 sin (x)] + [a2 cos (2x) + b2 sin (2x)] +

[a3 cos (3x) + b3 sin (3x)] + · · ·

where

an =
1
π

∫ π

−π
f (t) cos(nt)dt , bn =

1
π

∫ π

−π
f (t) sin(nt)dt
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The plan

I Proofs: we want to prove things in analysis, so we’ll start
with a brief review of proof techniques.

I Set theory: before we work with sets of real numbers we
have to get comfortable with some basic set theory. This
will be review for many, but we’ll also introduce a few new
concepts and see some neat results.

I Real numbers: the stars of the show. Limits and all that
comes after depend on the structure and properties of real
numbers.
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The plan, continued

I Sequences and Series: properties of lists and sums of
real numbers: our first real look at limits.

I Continuous functions: important properties of
continuous functions which follow from their examination
using limits.

I The Derivative: We now have the machinery to prove
some of the major results: chain rule, mean value theorem,
Taylor’s theorem.
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The plan, continued

I The Riemann Integral: Again, defined in terms of limits.
Fundamental Theorem of Calculus.

I Sequences of Functions: We can extend our study of
limits of sequences of real numbers to limits of sequences
of functions. The theory is fundamental to many fields:
differential equations, harmonic analysis, functional
analysis, etc.
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Logic and Proofs
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Statements: True or False?

I In mathematics we wish to establish whether a given
statement is true or false. That is, we wish to establish the
statement’s truth value.

I Statement: a sentence that can be classified as true or
false.

I Examples of statements:
I 2x = 4 has a solution. True!

I If f is a continuous function then f is differentiable. False!

I Every even number greater than 2 can be written as the
sum of two prime numbers. Unknown! (Goldbach
Conjecture: solve it and you would be famous!)
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Compound Statements

I Compound statements are constructed from simple
statements using connectives: not, and, or, if . . . then, if
and only if.

I Example: If x and y are both odd numbers, then xy is odd.

I If simple statements of known truth value are combined
using connectives, the truth value of the resulting
compound statement can be determined.
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Not

I Not: the logical opposite (negation).

I If p is a true statement, then “not p” is false.

Example: 29 is prime. true

Example: 29 is not prime. false

I If p is false, then “not p” is true.

Example: 3 is even. false

Example: It is not the case that 3 is even. true

I “not p” sometimes expressed “∼p” .
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And

I And: conjunction of two statements.

I If p and q are statements, then “p and q” is true only when
both p and q are true.

Example: 64 is a square and a cube. true

Example: 9 is a square and a cube. false

I “p and q” sometimes expressed “p ∧ q” .
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Or

I Or: disjunction of two statements.

I If p and q are statements, then “p or q” is true if at least
one of p and q is true.

Example: 9 is a square or a cube. true

Example: 9 is even or prime. false

I “p or q” sometimes expressed “p ∨ q” .
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If . . . then

I If p then q: implication or conditional statement.

I “If p then q” is false when p is true while q is false. It is true
in all other cases.

Example: If n is an integer, then 2n is an even number. true

Example: If n is any integer, then 2n + 1 is prime. false

Example: If n is an integer and n2 < 0, then n is prime. true
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Other language for conditional statements

“If p then q” is equivalent to

I “p implies q”

I “p only if q”

I “q if p”

I “q provided that p”

I “p is sufficient for q”

I “q is necessary for p”

I “p =⇒ q”
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If and only if

I p if and only if q: logical equivalence.

I Equivalent to saying that both “p implies q” and
“q implies p”

I true if both p and q are true, or both p and q are false.

Example:
√

x2 = x if and only if x ≥ 0. true

Example: f is a differentiable function if and only if f is
continuous. false

I “p if and only if q” also written “p ⇐⇒ q”
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Negation of compound statements

I not “p and q” is equivalent to “not p or not q”.

I not “p or q” is equivalent to “not p and not q”.

I not “p implies q” is equivalent to “p and not q”.
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Standard Proof Techniques

22 / 28



Typical situation

I We wish to prove a statement (a theorem maybe) of the
form “if p then q”.

I p is called the hypothesis and q the conclusion.

I Example: If n is an even integer greater than 2, then n can
be written as a sum of two prime numbers.
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Proof as an Art

Steven Lay: The construction of a proof of the implication
p =⇒ q can be thought of as building a bridge of logical
statements to connect the hypothesis p with the conclusion q.
The building blocks that go into the bridge consist of four kinds
of statements:

1. definitions,
2. assumptions,
3. theorems that have been previously established as true,

and
4. statements that are logically implied by the earlier

statements in the proof.
When actually building the bridge, it may not be at all obvious
which blocks to use or in what order to use them. This is where
experience is helpful, together with perseverance, intuition, and
sometimes a good bit of luck.
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Direct Proof

I To prove “if p then q”, assume statement p is true and use
facts, theorems and logic to show that q is true.

I Example:
Proposition: If n is an even integer then n2 is also even.

Proof: Suppose that n is an even integer. Then n = 2k for
some integer k . Therefore,

n2 = (2k)2 = 4k2 = 2(2k2)

Since 2k2 is an integer, 2(2k2) is even, so n2 is even.
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Proof by Contrapositive
I The contrapositive of “if p then q” is “if not q then not p”.
I An implication and its contrapositive are logically

equivalent. (Why?)
I To prove “if p then q”, it is sometimes easier to instead

prove “if not q then not p”
I Example:

Proposition: Suppose n is an integer. If 3n + 2 is even
then n is even.
Proof: We will prove the contrapositive: If n is odd, then
3n + 2 is odd. If n is odd, then n = 2k + 1 for some integer
k . Therefore,

3n + 2 = 3(2k + 1) + 2
= 6k + 5
= 2(3k + 2) + 1

Since 3k + 2 is an integer, 3n + 2 is odd.
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Proof by Contradiction

I A statement is either true or false. If assuming the
statement is false leads to a contradiction of a hypothesis
or known fact, then the statement cannot be false, so must
be true.

I Example:
Proposition: There are infinitely many prime numbers.

Proof: Suppose (for a contradiction) that there are only
finitely many prime numbers p1 < p2 < . . . < pn. Consider
the positive integer q = p1p2 · · · pn + 1. q is greater than pn
so cannot be prime, and so is divisible by some prime
p1,p2, . . . ,pn. But dividing q by any of these primes leaves
remainder 1, so q is not divisible by any of p1,p2, . . . ,pn.
This is a contradiction. Therefore, there are infinitely many
prime numbers.

27 / 28



Counter Examples

I A statement of the form “p =⇒ q" which uses (or implies
the use of) the words “for all” or “for every” is a statement
about a property that applies to every member of some set.

I To show that such a statement is false, it is enough to
produce one example for which p is true but q is false.

I Example:
Conjecture: For every real number x , if x is irrational, then
x2 is irrational.

Counerexample:
√

2 is irrational, but (
√

2)2 = 2 is not.

Note that the conjecture is true for some x , for example
x =
√
π, but not all x as claimed. A single counter example

is enough to refute the claim.
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