Question 1:
(a) [3 points] Let $f(x)=\sinh \left(\cosh ^{-1} x\right)$. Find $f^{\prime}(x)$.
(b) [3 points] Find $f^{\prime}(1)$ if $f(x)=\arctan (\sqrt{x})$.
(c)[4 points] Evaluate $\lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{x^{2}}\right)$.

Question 2:

(a) [3 points] Find $f(x)$ if $f^{\prime}(x)=e^{2 x}-\frac{1}{\sqrt{x}}$ and $f(0)=1$.
(b)[4 points] An object initially $s(0)=2 \mathrm{~m}$ above the surface of the moon is projected vertically upward with an initial velocity of $v(0)=10 \mathrm{~m} / \mathrm{s}$. Using the fact that acceleration due to gravity on the moon is $a(t)=-1.6 \mathrm{~m} / \mathrm{s}^{2}$, derive the formula for $s(t)$, the height of the object above the moon's surface at time t seconds.
(c)[3 points] Suppose $f(x)$ is a continuous function with the property that

$$
\int_{0}^{x} f(t) d t=\sin (2 x)-\int_{0}^{x} \cos (2 t) f(t) d t
$$

Find a formula for $f(x)$. (Hint: differentiate both sides of the equation above.)

Question 3:

(a)[5 points] The following figure shows points on the graph of $y=f(x)$. Use the trapezoid rule to estimate $\int_{0}^{7} f(x) d x$:

(b) [5 points] $f(x)=x e^{x}$ has second derivative $f^{\prime \prime}(x)=(2+x) e^{x}$. If the midpoint rule is being used to approximate $\int_{0}^{2} x e^{x} d x$, how many subintervals are required in order to be accurate to within 0.01 ? (Recall, the error in using the midpoint rule to approximate $\int_{a}^{b} f(x) d x$ is at most $\frac{K(b-a)^{3}}{24 n^{2}}$, where $\left|f^{\prime \prime}(x)\right| \leq K$ on $[a, b]$.)

Question 4:
(a)[5 points] Evaluate $\int 3 x^{2}-x \sin \left(x^{2}\right) d x$.
(b)[5 points] Evaluate $\int_{1}^{e} x^{\frac{3}{2}} \ln x d x$.

Question 5:
(a)[5 points] Evaluate $\int \tan ^{2} x \sec ^{4} x d x$.
(b) [5 points] Evaluate $\int \frac{\sqrt{x^{2}-1}}{x^{3}} d x$. (The identity $\sin (2 \theta)=2 \sin \theta \cos \theta$ may be useful here.)

Question 6:
(a)[5 points] Evaluate $\int \frac{1}{x^{3}+4 x^{2}} d x$.
(b)[5 points] Evaluate the improper integral $\int_{0}^{3} \frac{x}{\sqrt{9-x^{2}}} d x$

Question 7:

(a)[5 points] Find the area of the shaded region:

(b)[5 points] The shaded region is rotated about the vertical line $x=\pi / 2$; set up the integral representing the volume of the resulting solid. DO NOT EVALUATE THE INTEGRAL.

Question 8: Consider the graph of the following ellipse:

If the ellipse is rotated about the x-axis the resulting solid is called an ellipsoid (which looks rather like a watermelon).
(a) [3 points] Isolate y in the equation above to find a function which describes the top half of the ellipse.
(b)[7 points] Use your result in (a) to find the volume of the ellipsoid.

Question 9: A rectangular fish tank of length 4 m , width 2 m and height 3 m contains water to a depth of 2 m . Recall that the density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

(a)[5 points] How much work is required to pump all of the water out over the edge of the tank?
(b)[5 points] What is the hydrostatic force (force due to water pressure) exerted on one of the long sides of the tank? Recall that pressure P as a function of depth h is $P(h)=\rho g h$ where ρ is the density of the liquid and g is acceleration due to gravity.

Question 10: The fish population in a large lake is infected by a disease at time $t=0$, and the declining fish population is described by the differential equation

$$
\frac{d P}{d t}=-k \sqrt{P}
$$

Here k is a positive constant and $P(t)$ is the fish population at time t weeks. Suppose there were initially 90,000 fish in the lake and that 40,000 remain after 6 weeks.
(a)[7 points] Solve the differential equation to find a formula for $P(t)$.
(b) [3 points] Use your result in (a) to find the time required for the fish population to reduce to 10,000.

Question 11: Recall that $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$, and that the Maclaurin series for e^{x} is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

(a)[4 points] Find the first three non-zero terms of the Maclaurin series for $f(x)=\sinh \left(x^{2}\right)$.
(b) [3 points] Use a Maclaurin series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-\left(x^{2} / 2\right)}{x^{3}}
$$

(c) [3 points] Suppose $f(x)$ is a function such that $f(2)=3, f^{\prime}(2)=0, f^{\prime \prime}(2)=-1$ and $f^{\prime \prime \prime}(2)=2$. Use a Taylor polynomial of degree 3 to approximate $f(2.1)$. Round your final answer to three decimals.

