Question 1:
(a)[3 points] Let $f(x)=\arcsin (\sinh (x))$. Evaluate $f^{\prime}(0)$.
(b)[4 points] Evaluate

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x \sin x}
$$

(c)[5 points] Evaluate

$$
\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}
$$

Question 2:

(a)[4 points] A particle is moving with acceleration $a(t)=t+\sin t \mathrm{~m} / \mathrm{s}^{2}$. If velocity at time $t=0$ is $v(0)=2 \mathrm{~m} / \mathrm{s}$ and initial position is $s(0)=0 \mathrm{~m}$, determine $s(t)$, the position of the particle at time $t=$ seconds.
(b)[3 points] The average value of $f(x)=x^{3}$ over the interval $[0, a]$ is 16 . Determine the value of a.
(c)[3 points] Use the Fundamental Theorem of Calculus to determine $f(x)$ if

$$
\int_{0}^{x} f(t) d t=x e^{x^{2}}+1
$$

Question 3:

(a)[3 points] Evaluate:

$$
\int \frac{2 x^{3}+5 \sqrt{x}-3}{x} d x
$$

(b) $[3$ points $]$ Evaluate:

$$
\int \frac{\sin (\sqrt{x}+1)}{\sqrt{x}} d x
$$

(c)[4 points] The population is growing at a rate of $P^{\prime}(t)=200 e^{t / 5}$ individuals per year, where year $t=0$ corresponds to the present. If the current population size is $P(0)=1000$, determine the population size at the end of five years.

Question 4:
(a) [6 points] Evaluate:

$$
\int\left(x^{2}+1\right) e^{-x} d x
$$

(b) [6 points] Evaluate:

$$
\int \sec ^{6} x \tan ^{2} x d x
$$

Question 5 [8 points]: Evaluate:

$$
\int x^{3} \sqrt{4-x^{2}} d x
$$

Question 6 [8 points]: Evaluate:

$$
\int_{0}^{1} \frac{4 x^{2}+x+3}{(x+1)\left(x^{2}+1\right)} d x
$$

Question 7:

(a)[4 points] Use the graph of $y=f(x)$ below to approximate $\int_{0}^{12} f(x) d x$ using M_{6}, the midpoint rule on six subintervals.

(b)[4 points] If Simpson's Rule is used to approximate $\int_{0}^{180}\left(\frac{x^{4}+x}{24}\right) d x$, how many subintervals are required to guarantee an error of at most 1? Recall, the error in using Simpson's rule to approximate $\int_{a}^{b} f(x) d x$ is at most $\frac{K(b-a)^{5}}{180 n^{4}}$, where $\left|f^{(4)}(x)\right| \leq K$ on $[a, b]$.

Question 8:

(a)[3 points] Use the comparison theorem to determine if the integral converges or diverges (do not attempt to evaluate the integral):

$$
\int_{1}^{\infty} \frac{e^{-x}}{x^{4}+1} d x
$$

(b)[5 points] Evaluate the improper integral:

$$
\int_{0}^{1} \frac{e^{x}}{\sqrt{e^{x}-1}} d x
$$

Question 9:

(a)[5 points] Determine the area of the region bounded between the curves $y=x^{2}$ and $y=x^{3}-2 x$.

(b)[5 points] A 10 m chain with a 100 N weight at the end hangs over the side of a bridge. The weight is initially 20 m above the ground, and one metre of chain weighs 10 N . A person pulls the chain and weight up onto the bridge deck. How much work is done?

Question 10

(a)[7 points] A vessel is formed by rotating the curve $y=\sqrt{x}$ about the y-axis as shown below. The vessel has a top radius of 4 m and a depth of 2 m . If the vessel is initially filled with water to a depth of 1 m , how much work is required empty the vessel by pumping the water up and over the top rim? Recall that the density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. (You may leave your final answer as a product of fractions.)

(b)[3 points] Determine the total volume of the vessel described in part (a). (Disks would be best here.)

Question 11:

(a)[3 points] The region bounded between the curves $y=1-x^{2}$ and $y=2\left(1-x^{4}\right)$ is rotated about the line $x=-2$. Set up the integral representing the volume of the resulting solid. DO NOT EVALUATE THE INTEGRAL. (Cylindrical shells would be best here.)

(b)[3 points] Referring to the diagram for part (a), the same bounded region is rotated about the horizontal line $y=2$. Set up the integral representing the volume of the resulting solid. DO NOT EVALUATE THE INTEGRAL. (Disks would be best here.)
(c)[4 points] The base (flat bottom surface) of the solid S is the region between the curve $y=\sqrt{1-\frac{x^{2}}{4}}$ and the x-axis. Cross-sections perpendicular to the x-axis are squares. Determine the volume of S.

Question 12:

(a)[4 points] Solve the differential equation:

$$
\frac{d y}{d x}=\frac{y \cos x}{1+y^{2}} \quad y(0)=1
$$

(b) [6 points] A tank contains 1000 L of pure water. Salt water with a concentration of $0.1 \mathrm{~kg} / \mathrm{L}$ of salt enters the tank at a rate of 10 L per minute, while water is pumped out of the bottom of the tank at the same rate. The water in the tank is kept thoroughly mixed. The mass $A(t)$ of dissolved salt in the tank at time t is modeled by the differential equation

$$
\frac{d A}{d t}=1-\frac{1}{100} A \quad A(0)=0
$$

Solve this differential equation for $A(t)$.

Question 13:
(a)[4 points] Use the definition to construct $T_{2}(x)$, the Maclaurin series of degree 2, for the function $f(x)=\sin \left(x^{2}+x\right)$
(b)[4 points] Use Maclaurin series (not L'Hospital's Rule) to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x \sin x}
$$

