Question 1:
(a)[3 points] Evaluate $f^{\prime}(0)$ where $f(x)=x \arccos (x)-\sqrt{1-x^{2}}$.
(b) [3 points] Evaluate $g^{\prime}(0)$ where $g(x)=\cosh (x) \sinh \left(x^{2}\right)$.
(c)[4 points] Evaluate

$$
\lim _{x \rightarrow 0^{+}} \sin (x) \ln (x)
$$

Question 2:

(a)[4 points] Evaluate

$$
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t e^{t}}\right)
$$

(b) [3 points] An animal gains mass at a rate of $W(t)=\frac{100 t}{\left(t^{2}+1\right)^{3}} \mathrm{~kg} / \mathrm{yr}$, where t is time in years. What is the total mass gain during the first two years of life?
(c)[3 points] The average value of $f(x)=q x^{2}$ over the interval $[-q, q]$ is 9 . Determine the value of the constant q.

Question 3:
(a)[3 points] Define the function

$$
F(x)=\int_{-1}^{x^{3}} \frac{\cos \left(t^{2}\right)}{e^{t}} d t
$$

Evaluate and simplify $F(-1)-F^{\prime}(0)$.
(b)[3 points] Evaluate:

$$
\int \frac{1}{x \ln x} d x
$$

(c)[4 points] Evaluate:

$$
\int_{0}^{1}(\sqrt[4]{x}+1)^{2} d x
$$

Question 4:

(a)[3 points] Evaluate:

$$
\int \frac{x+2}{(x-1)^{3 / 2}} d x
$$

(b)[4 points] Evaluate the following limit of Riemann Sums by interpreting it as $\int_{a}^{b} f(x) d x$ for some a, b and $f(x)$:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{1}{n}\right)^{3}+\left(\frac{2}{n}\right)^{3}+\cdots+\left(\frac{n}{n}\right)^{3}\right]
$$

(c)[3 points] For the function $f(x)$ whose graph is shown below, $\int_{-4}^{5} f(x) d x=\frac{-5}{6}$. Determine the area of the shaded region A.

Question 5 [8 points]: Evaluate:

$$
\int x^{3}(\ln x)^{2} d x
$$

Question 6 [8 points]: Evaluate:

$$
\int \frac{5 x-8}{x^{2}+x-12} d x
$$

Question 7 [8 points]: Evaluate:

$$
\int \sqrt{16-x^{2}} d x
$$

Question 8:

(a)[4 points] Consider the integral $\int_{0}^{4} 4\left(1+x^{2}\right) d x$. Let M_{2} be the midpoint rule approximation of the integral using two subintervals, and T_{2} the trapezoid rule approximation using two subintervals. Determine $T_{2}-M_{2}$.
(b)[4 points] Determine the error in T_{2}, the trapezoid rule approximation used in part (a). Recall, the error in using the trapezoid rule to approximate $\int_{a}^{b} f(x) d x$ is at most $\frac{K(b-a)^{3}}{12 n^{2}}$, where $\left|f^{\prime \prime}(x)\right| \leq K$ on $[a, b]$.

Question 9:
(a)[4 points] Evaluate the improper integral

$$
\int_{0}^{\infty} \frac{x^{3}}{e^{\left(x^{4}\right)}} d x
$$

(b)[4 points] Evaluate the improper integral:

$$
\int_{2}^{3} \frac{1}{\sqrt{3-x}} d x
$$

(c)[2 points] Use the Comparison Theorem to show that the following integral diverges:

$$
\int_{1}^{\infty} \frac{x^{3}+\sin ^{2} x}{x^{4}} d x
$$

Question 10:
(a)[5 points] Determine the area of the region bounded between the curves $y=4 x-x^{2}$ and $y=x^{2}$.
(b)[5 points] The bounded region in part (a) is rotated about the x-axis. Determine the volume of the resulting solid. (Disks/washers would be best here.)

Question 11:

(a)[4 points] The curve $y=\cos (x),-\pi / 2 \leq x \leq \pi / 2$, is rotated about the vertical line $x=$ π. Set up but do not evaluate the integral representing the volume of the resulting solid. (Cylinders would be best here.)
(b)[4 points] 20 m rope hangs over the side of a building and a 10 kg bucket is tied to the end of the rope. A person at the top of the building pulls the rope and bucket up onto the roof of the building. How much work is done if the rope has a total mass of 2 kg ? Recall that the acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Question 12:

(a)[5 points] The base (flat bottom surface) of a solid is the region between the curve $y=$ $\sqrt{1-x^{2}}$ and the x-axis. Note that $y=\sqrt{1-x^{2}}$ is the upper half of the circle of radius 1 and centre $(0,0)$. Cross-sections perpendicular to the x-axis are isosceles triangles of equal height and base. Determine the volume of the solid.
(b)[5 points] Solve the following differential equation:

$$
\frac{d y}{d x}=\frac{1+y^{2}}{\sqrt{x+1}}, \quad y(0)=1
$$

You may leave your solution in implicit form (it is not necessary to isolate the y variable in your final answer.)

Question 13:

(a)[3 points] Determine the first three non-zero terms of the Maclaurin series for the function $f(x)=x^{3} e^{x^{2}}$.
(b)[4 points] Use a Maclaurin series (not L'Hospital's Rule) to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos \left(x^{2}\right)}{x^{3}\left(e^{x}-1\right)}
$$

(c) [3 points] Determine the Maclaurin polynomial of degree three for $f(x)=e^{x} \sin x$. You may use the definition or any other valid method to obtain your answer.

