Question 1:

(a) Use the <u>midpoint</u> rule on 2 subintervals to approximate $\int_0^{\pi} \sin(x) \cos(x) dx$. Simplify your final answer.

[5]

(b) Give an error bound on your approximation in part (a). Simplify your final answer.

Question 2:

(a) Determine $\int_0^\infty xe^{-x^2} dx$ making proper use of any required limits.

[5]

(b) Your answer in part (a) represents the area in the first quadrant between $y = xe^{-x^2}$ and the x-axis. Determine the value of q such that half of the area lies to the left of the line x = q.

Math 122 - Test 4 Apr 9 2018

Question 3: Determine the area of the shaded region:

[5]

Question 4: Determine the area of the region in the first quadrant bounded by $y = e^x$, y = e + 1 - x and the y-axis.

[5]

Math 122 - Test 4 Apr 9 2018

Question 5: Determine the volume of a cone of base radius r and height h.

[5]

Question 6: The region in the first quadrant bounded between y = x and $y = \sqrt{x}$ is rotated about the line y = 2. Determine the volume of the resulting solid.

(The washer method and the cylindrical shell method are both equally effective for this question.)

Math 122 - Test 4 Apr 9 2018

Question 7: The region bounded between $y = x^2$ and $y = 2 - x^2$ is rotated about the line x = 1. Set up BUT DO NOT EVALUATE the integral representing the volume of the resulting solid. (Cylindrical shells is best for this question.)

[5]

Question 8: The region in the first quadrant bounded between $y = x^2$, y = 2 - x and the x-axis is rotated about the line y = -2. Set up BUT DO NOT EVALUATE the integral representing the volume of the resulting solid. (Cylindrical shells is best for this question.)