Question 1:

(a) Determine the coefficient of 1/(z+1) in the partial fraction decomposition of

$$\frac{z^3 + 4z + 9}{(2z+2)(z-3)^5}$$

[3]

(b) Compute $\int_{\Gamma} \frac{z^3 + 4z + 9}{(2z + 2)(z - 3)^5} dz$ where Γ is the circle of radius 3 centred at z = -1. Explain your reasoning.

[2]

Question 2: Show that $\overline{\sin(z)} = \sin(\overline{z})$.

Question 3: Find all solutions to $e^{2z} + e^z + 1 = 0$

[5]

Question 4: Compute $(1+i)^{(1+i)}$

Question 5: Let Γ be the contour consisting of two smooth curves γ_1 and γ_2 as follows: γ_1 is the straight line segment from i to 2i. γ_2 is the arc of the circle of centre z=0 and radius 2 which begins at 2i and proceeds clockwise, ending at $\sqrt{2}(1+i)$. Using this contour evaluate

$$\int_{\Gamma} \frac{1}{(\overline{z})} \, dz$$

[6]

Question 6: Using the same contour Γ as in the previous question, evaluate

$$\int_{\Gamma} \frac{1}{z} dz$$

Question 7: Compute the following integrals. In each case the contour is traversed once in the positive direction. Make reference to any theorems used.

(a)
$$\int_{\Gamma} \frac{\sin(z)}{z^2 - z - 6} dz$$

Here Γ is the circle of centre z=i and radius 2.

[3]

(b)
$$\int_{\Gamma} \frac{e^z}{z^2 + 1} dz$$

Here Γ is the top half of the circle of centre z=0 and radius 2 followed by the line segment from -2 to 2.

[3]

(c)
$$\int_{\Gamma} \frac{\cos^2(z)}{z^2 - \pi^2} dz$$

Here Γ is a square of area 64 and is such that each side is parallel to one coordinate axis and bisected by another.