Math 372 - Introductory Complex Variables

G.Pugh

Feb 27 2017

Recap of Last Day

Theorem: Let f be continuous on the directed smooth curve γ having admissible parametrization z(t), $a \le t \le b$. Then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$

Proof: Let $\mathcal{P}_n = \{z(t_0), z(t_1), \dots, z(t_n)\}$ be a partition of γ and $\Delta z_k = z_k - z_{k-1}, \ \Delta t_k = t_k - t_{k-1}.$

Since z(t) is differentiable,

$$z'(t_k) - \frac{\Delta z_k}{\Delta t_k} = \epsilon_k$$

where $\epsilon_k \to 0$ as $\Delta t_k \to 0$.

Recap of Last Day, continued

So

$$\Delta z_k = z'(t_k) \Delta t_k - \epsilon_k \Delta t_k$$

So

$$\sum_{k=1}^{n} f(z_k) \Delta z_k = \sum_{k=1}^{n} f(z(t_k)) [z'(t_k) \Delta t_k - \epsilon_k \Delta t_k]$$

$$= \sum_{k=1}^{n} f(z(t_k)) z'(t_k) \Delta t_k - \sum_{k=1}^{n} f(z(t_k)) \epsilon_k \Delta t_k$$

Recap of Last Day, continued

Now let
$$M_f = \max_{a \le t \le b} |f(z(t))|$$
 and $M_\epsilon = \max_{1 \le k \le n} |\epsilon_k|$. Then

$$\left| \sum_{k=1}^{n} f(z_k) \Delta z_k - \sum_{k=1}^{n} f(z(t_k)) z'(t_k) \Delta t_k \right| = \left| \sum_{k=1}^{n} f(z(t_k)) \epsilon_k \Delta t_k \right|$$

$$\leq M_f M_\epsilon \sum_{k=1}^{n} \Delta t_k$$

$$= M_f M_\epsilon (b-a)$$

Letting $n \to \infty$ and $\mu(\mathcal{P}_n) \to 0$, $M_{\epsilon} \to 0$, leaving

$$\left| \int_{\gamma} f(z) dz - \int_{a}^{b} f(z(t))z'(t) dt \right| = 0$$

Also from 4.2:

Theorem: Let f be continuous on the contour Γ . Then

$$\left| \int_{\gamma} f(z) \, dz \right| \leq \left(\max_{z \in \Gamma} |f(z)| \right) \ell(\Gamma)$$

Proof: For any Riemann sum approximating the integral we have

$$\left| \sum_{k=1}^{n} f(c_k) \Delta z_k \right| \leq \sum_{k=1}^{n} |f(c_k)| |\Delta z_k|$$

$$\leq \max_{z \in \Gamma} |f(z)| \sum_{k=1}^{n} |\Delta z_k|$$

Now let $n \to \infty$ and $\mu(\mathcal{P}_n) \to 0$.

4.3 - Independence of Path

The Main Result

- Under certain conditions $\int_{\Gamma} f(z) dz$ can be computed without parametrizing Γ .
- Theorem: Suppose that f is continuous and has antiderivative F throughout a domain D. Then for any contour Γ with initial point z_I and terminal point z_T,

$$\int_{\Gamma} f(z) dz = F(z_T) - F(z_I)$$

That is, the value of the integral is independent of the path Γ joining the initial and terminal points.

Corollary to the main result

Corollary: Suppose that f is continuous and has antiderivative F throughout the domain D. Then for any closed contour Γ (so that $z_I = z_T$),

$$\int_{\Gamma} f(z) dz = F(z_T) - F(z_I) = 0$$

Proof of Main Result

Suppose that f is continuous and has antiderivative F throughout a domain D, and let Γ be a contour with initial point z_I and terminal point z_T .

Suppose $\Gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_n$ where each γ_k is a smooth arc or smooth closed curve.

For each $j=1,\ldots,n$, let $z_k(t)$ be an admissible parametrization of γ_k , where $a_k \leq t \leq b_k$. Notice: $z_k(b_k) = z_{k+1}(a_{k+1})$.

Proof of Main Result, continued

Now, calculate:

$$\int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz$$

$$= \sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} f(z_{k}(t)) z'_{k}(t) dt$$

$$= \sum_{k=1}^{n} [F(z_{k}(t)]_{a_{k}}^{b_{k}}]$$

$$= \sum_{k=1}^{n} [F(z_{k}(b_{k})) - F(z_{k}(a_{k}))]$$

Proof of Main Result, continued

This is a telescoping sum:

$$\sum_{k=1}^{n} [F(z_{k}(b_{k})) - F(z_{k}(a_{k}))]$$

$$= [F(z_{1}(b_{1})) - F(z_{1}(a_{1}))] + [F(z_{2}(b_{2})) - F(z_{2}(a_{2}))] + \cdots$$

$$+ [F(z_{n-1}(b_{n-1})) - F(z_{n-1}(a_{n-1}))] + [F(z_{n}(b_{n})) - F(z_{n}(a_{n}))]$$

$$= F(z_{n}(b_{n})) - F(z_{1}(a_{1}))$$

$$= F(z_{T}) - F(z_{I})$$

Existence of Antiderivatives

Theorem: If f is continuous in a domain D and contour integrals of f are independent of path in D, then f has an antiderivative in D.

Proof: Let $z_0 \in D$ be fixed and consider

$$F(z) = \int_{\Gamma_1} f(w) \, dw$$

where Γ_1 is any contour from z_0 to z. We must show that F'(z) = f(z)

Existence of Antiderivatives, continued

Let Γ_2 be the line segment from z to $z + \Delta z$. Then

$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[\int_{\Gamma_1 + \Gamma_2} f(w) \, dw - \int_{\Gamma_1} f(w) \, dw \right]$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_{\Gamma_2} f(w) \, dw$$

Existence of Antiderivatives, continued

On
$$\Gamma_2$$
, $w(t) = z + t\Delta z$, $w'(t) = \Delta z$, where $0 \le t \le 1$. So

$$F'(z) = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_0^1 f(z + t\Delta z) \Delta z \, dt$$
$$= \lim_{\Delta z \to 0} \int_0^1 f(z + t\Delta z) \, dt$$
$$= f(z)$$

by the continuity of f.

One last theorem

Theorem: If f is continuous in a domain D and $\int_{\Gamma} f(z) dz = 0$ for every loop (closed contour) Γ in D then contour integrals of f in D are independent of path.

Proof: Suppose Γ_1 and Γ_2 are two contours from point z_I to point z_T . Then $-\Gamma_2$ is a contour from z_T to z_I , so $\Gamma_1 + (-\Gamma_2)$ is a loop and

$$\int_{\Gamma_1+(-\Gamma_2)} f(z)\,dz=0$$

One last theorem, continued

Thus

$$\int_{\Gamma_1} f(z) dz + \int_{-\Gamma_2} f(z) dz = 0$$

so

$$\int_{\Gamma_1} f(z) dz = - \int_{-\Gamma_2} f(z) dz$$

so

$$\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$$

In Summary

We have shown:

Theorem: Suppose f is continuous in a domain D. The following are equivalent (each statement implies the others):

(i) f(z) has an antiderivative in D

(ii)
$$\int_{\Gamma} f(z) dz = 0$$
 for every loop in D

(iii) Contour integrals are independent of path in D