- 1. Evaluate the following integrals over the indicated contours. In each case the contour is traversed once in the positive direction. State any theorems used in your calculation.
 - (a) $\int_{\Gamma} \frac{z^2}{z+3} dz$ where Γ is the circle of radius 2 and centre z=0 .
 - (b) $\int_{\Gamma} \frac{z^2}{z+3} \, dz$ where Γ is the circle of radius 4 and centre z=0 .
 - (c) $\int_{\Gamma} \frac{2\cos^2 z}{z^2 + 7z + 7} dz$ where Γ is the unit circle .
 - (d) $\int_{\Gamma} \frac{e^z}{z} dz$ where Γ is the square bounded by the lines |Re(z)| = 2 and |Im(z)| = 2.
 - (e) $\int_{\Gamma} \frac{z^2}{(z^2+1)^2} dz$ where Γ is the semi-circle $\{z: z=t+0i, -R\leq t\leq R\} \cup \{z: z=Re^{it}, 0\leq t\leq \pi\}$.
- 2. Prove the *Maximum Modulus Principle*: If f(z) is analytic inside and on a simple closed contour Γ then the maximum of |f(z)| occurs on Γ .

Hint: proceed as follows: Let z_0 be any point inside Γ and let M be the maximum of |f(z)| on Γ . We will show that $|f(z_0)| \leq M$.

(a) Let $n \ge 1$ be an integer. Then

$$[f(z_0)]^n = \frac{1}{2\pi i} \int_{\Gamma} \frac{[f(\zeta)]^n}{\zeta - z_0} d\zeta \quad \text{(why?)}$$

(b) Let μ be the minimum distance from z_0 to Γ and $\ell(\Gamma)$ be the length of Γ . Use (1) to show that

$$|f(z_0)|^n \le \frac{1}{2\pi} \frac{M^n}{\mu} \ell(\Gamma) \tag{2}$$

- (c) Take $n^{ ext{th}}$ roots of both sides of (2) and then let $n o \infty$.
- 3. Determine the largest open disk on which $\sum_{n=1}^{\infty} \frac{(z+1)^n}{(n+5)^3 3^n}$ converges.
- 4. For each of the following, determine the largest open disk on which the Taylor series converges
 - (a) $\frac{\sin z}{z^2 + 4}$ about z = 0.
 - (b) $\frac{e^z}{z^2-z}$ about z=4i.