- 1. Compute the following integrals. Explain your reasoning, especially if relying on the path independence theorem.
 - (a) $\int_{\gamma} 2z \, dz$ where γ is parametrized by $z(t) = 2\cos^3(\pi t) i\sin^2(\pi t/4)$, $0 \le t \le 2$.
 - (b) $\int_{\gamma} \frac{1}{z} dz$ where γ is the right half of the unit circle from -i to i .
 - (c) $\int_{\gamma} \frac{1}{z} dz$ where γ is the left half of the unit circle from -i to i .
 - (d) $\int_{\gamma}z\sin{(z^2)}\,dz$ where γ is the spiral $z(t)=te^{it}$, $0\leq t\leq 8\pi$.
 - (e) $\int_{\gamma} \text{Log}(z) \, dz$ where γ is the unit circle . (Harder: be careful with the branch cut; you may require limits.)
- 2. Compute $\int_{\Gamma} \left[\frac{7}{(z-i)^3} \frac{5}{z-i} + 11(z-i)^5 \right] dz$ where Γ is the circle |z-i| = 3 traversed once in the positive direction.
- 3. Proof or counterexample: If f is analytic at each point of a closed contour Γ then $\int_{\Gamma} f(z) dz = 0$.
- 4. Let D be the unit disk $\{z: |z| < 1\}$ and suppose that f is analytic with |f'(z)| < M for every $z \in D$. Show that

$$|f(z_2)-f(z_1)| \leq M|z_2-z_1|$$

for every $z_1, z_2 \in D$.

(Hint: $f(z_2) - f(z_1) = \int_{\Gamma} f'(z) dz$ where Γ is a line segment from z_1 to z_2 in D.)

posted Fri Mar 3 2017