- 1. Find a branch of $\log(z^3-1)$ (that is, $\mathcal{L}_{\tau}(z^3-1)$ for a suitable τ) that is analytic at z=0 and takes the value $i\pi$ there.
- 2. Compute the following integrals. In some cases you must find a suitable parametrization for the given contour:
 - (a) $\int_{\gamma} (\operatorname{Im}(z))^2 dz$ where γ is parametrized by z(t) = 3t + 2it, $-2 \le t \le 2$.
 - (b) $\int_{\gamma} \frac{z+1}{\overline{z}} \, dz$ where γ is the right half of the unit circle from -i to i .
 - (c) $\int_{\gamma} |z|^2 dz$ where γ is $z(t) = t^2 + \frac{i}{t}$, $1 \leq t \leq 2$.
 - (d) $\int_{\gamma} e^{\overline{z}} dz$ where γ consists of the line segment from z=0 to z=2 followed by the line segment from z=2 to $z=1+\pi i$.
 - (e) $\int_{\gamma} \text{Re}(z) dz$ where γ is the circle of radius 2 with positive orientation.

posted Fri Feb 17 2017 p. 1 of 1