- 1. Show that $u(x, y) = \ln(x^2 + y^2)$ is harmonic in an appropriate domain D and then find a harmonic conjugate v(x, y) for u(x, y).
- 2. (a) Show that $v(x,y)=\frac{x}{x^2+y^2}$ is harmonic on $D=\mathbb{C}\setminus\{0\}$.
 - (b) Find a function f(z) = u(x, y) + iv(x, y) that is analytic on D.
 - (c) Express f(z) in (b) in terms of the variable z.
- 3. Suppose $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ is a polynomial of degree $n \ge 1$ and that $|a_0| > 1$. Show that p(z) has at least one zero outside the unit circle.
- 4. Find the Taylor form for $p(z) = (z-1)(z-2)^3$ centred at z=2.
- 5. Find all poles and their corresponding multiplicities for $f(z) = \frac{z^2 9}{(z^2 + 9)^2}$, and then determine the coefficient of $\frac{1}{z 3i}$ in the partial fraction decomposition of f(z). (That coefficient is called the **residue** of f(z) at 3i, written Res(3i).)
- 6. (a) Calculate $tan(\pi 2i)$
 - (b) Find all solutions to cos(z) = i sin(z)
 - (c) Find all solutions to cos(z) = sin(z)
- 7. Compute the following logarithms:
 - (a) $\log (\sqrt{2} + \sqrt{6}i)$
 - (b) $\log(-ei)$
 - (c) $Log(-e^2)$
 - (d) Log(-12 + 5i)
 - (e) $Log[(1+\sqrt{3}i)^5]$
- 8. Find the image of the given set under the mapping w = Logz:
 - (a) The circle |z| = 4
 - (b) the region in the first quadrant bounded between the circles |z|=1 and |z|=e
- 9. Prove that $\log(z^n) = n \log(z)$ for every $z \in \mathbb{C} \setminus \{0\}$ and integer n.
- 10. Find all values of the given complex power:
 - (a) $(1+i)^{1-i}$
 - (b) $3^{2i/\pi}$
 - (c) $(1 + \sqrt{3}i)^i$
- 11. Find the principal value of the given complex power:
 - (a) $i^{i/\pi}$
 - (b) $(1+i)^{2-i}$
- 12. Is $1^z = 1$ for every complex number z? Is the principal value of $1^z = 1$? Explain.