1. Express each of the following complex numbers in the form a + ib with a and b real:

(a)
$$2i^6 + \left(\frac{2}{-i}\right)^3 + 5i^{-5} - 12i$$

(b)
$$i(4-i)+4i(1+2i)$$

(c)
$$3i + \frac{1}{2-i}$$

(d)
$$\frac{(3-i)(2+3i)}{1+i}$$

(e)
$$(2+3i)\left(\frac{2-i}{1+2i}\right)^2$$

2. Find both Re(z) and Im(z) if
$$z = \left(\frac{i}{3-i}\right)\left(\frac{1}{2+3i}\right)$$
.

3. Let
$$z = x + iy$$
. Express $Im(2z + 4\overline{z} - 4i)$ in terms of x and y.

4. Find all solutions z to the following equations:

(a)
$$z - 2\overline{z} + 7 - 6i = 0$$

(b)
$$z = \overline{z}$$

(c)
$$z^2 = (\bar{z})^2$$

5. Show that if z_1z_2 is a nonzero real constant then $z_2=k\overline{z_1}$ for some real number k .

6. Let $z_1 = 5 + 4i$ and $z_2 = -3i$. Sketch the following vectors in the complex plane:

(a)
$$3z_1 + 5z_2$$

(b)
$$z_1 - 2z_2$$

7. Let
$$z_1 = 10 + 8i$$
 and $z_2 = 11 - 6i$. Which of these complex numbers is closest to $1 + i$?

8. Sketch and describe the set of points in the complex plane which satisfy the following:

(a)
$$|z-1|=1$$

(b)
$$|z-2| = \text{Re}(z)$$

9. Write the following complex numbers in polar form using $\theta = \text{Arg}(z)$:

(b)
$$\frac{3}{-1+i}$$

10. Express $(3-3i)(5+5\sqrt{3}i)$ in polar form. Your final answer should not contain any inverse trigonometric functions.

11. Express $(1+\sqrt{3}i)^9$ in both polar form and form a+ib .