Math 372 - Introductory Complex Variables

G.Pugh

Jan 13 2017

Recap of Last Day

1.4 - The Complex Exponential

► The representation $z = re^{i\theta}$ is a consequence of the definition

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

This series converges absolutely for every $z \in \mathbb{C}$; more on this later.

Letting $z = i\theta$ in this definition we find:

$$e^{i\theta} = \left(\sum_{k=0}^{\infty} \frac{\theta^{2k}}{(2k)!}\right) + i\left(\sum_{k=0}^{\infty} \frac{\theta^{2k+1}}{(2k+1)!}\right) = \cos\theta + i\sin\theta,$$

Also can show that

$$e^z e^w = e^{z+w}$$
,

and so for $p, q \in \mathbb{R}$

$$e^p e^{iq} = e^{p+iq}$$

Euler's Equation

- ► The equation $e^{i\theta} = \cos \theta + i \sin \theta$ is called Euler's equation
- Letting $\theta = \pi$ we find

$$e^{i\pi} = \cos \pi + i \sin \pi$$

from which

$$e^{i\pi} + 1 = 0$$

Called "The most beautiful theorem in mathematics" by some

Euler's Equation continued

▶ Recall that for $\theta \in \mathbb{R}$:

$$\cos(-\theta) = \cos\theta$$
, $\sin(-\theta) = -\sin\theta$

This gives

$$e^{i\theta} = \cos \theta + i \sin \theta$$

 $e^{-i\theta} = \cos \theta - i \sin \theta$

- Now add and divide by 2 to find $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$.
- Subtract and divide by 2*i* to find $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.

Periodicity of the complex exponential

▶ For $k \in \mathbb{Z}$.

$$e^{i(\theta+2k\pi)}=e^{i\theta}e^{i2k\pi}=e^{i\theta}\cdot 1=e^{i\theta}$$

Say that $e^{i\theta}$ is periodic with period 2π

Example

Find an identity which expresses $\sin(4\theta)$ in terms of $\sin\theta$ and $\cos\theta$.

1.5 - Powers and Roots

Powers

▶ For $n \in \mathbb{N}$ it is easy to define z^n :

$$z = |z|e^{i\theta}$$

SO

$$z^n = |z|^n e^{in\theta}$$

- ▶ In fact, true for $n \in \mathbb{Z}$ if $z^{-n} = 1/z^n$.
- ▶ Value of z^n is the same regardless of branch of arg(z) used to define θ :

$$|z|^n e^{in(\theta+2k\pi)} = |z|^n e^{in\theta} e^{in2k\pi} = |z|^n e^{in\theta} \cdot 1$$

Roots

- For roots of complex numbers there is more to consider.
- ▶ **Definition:** For $m \in \mathbb{N}$, ζ is an m^{th} root of z if $\zeta^m = z$
- ▶ To find all m^{th} roots of a complex number $z = |z|e^{i\theta} \neq 0$, let $\zeta = \rho e^{i\phi}$ where $\rho > 0$.
- ▶ Then we must have $\rho^m e^{im\phi} = |z|e^{i\theta}$
- So $\rho = \sqrt[m]{|z|}$ and $e^{im\phi} = e^{i\theta}$

Roots, continued

▶ So
$$m\phi = \theta + 2k\pi$$
, where $k \in \mathbb{Z}$

So
$$\phi = \frac{\theta}{m} + \frac{2k\pi}{m}$$
, where $k \in \mathbb{Z}$

So all possible mth roots of z are given by

$$\zeta = \sqrt[m]{|z|}e^{i(\theta+2k\pi)/m}, \quad k \in \mathbb{Z}$$

Roots, continued

- ▶ Notice: for k = 0, 1, ..., m 1 we have $0 \le \frac{2k\pi}{m} < 2\pi$
- So $\zeta = \sqrt[m]{|z|}e^{i(\theta+2k\pi)/m}, \quad k=0,1,\ldots,m-1$ represents m distinct m^{th} roots of z.
- Are these m roots the only ones? That is, what if $k \le -1$ or $k \ge m$?

Roots, continued

- ▶ By the Division Algorithm there are integers q and r such that k = qm + r where $0 \le r \le m 1$
- ► So

$$\zeta = \sqrt[m]{|z|}e^{i(\theta+2k\pi)/m}$$

$$= \sqrt[m]{|z|}e^{i(\theta+2(qm+r)\pi)/m}$$

$$= \sqrt[m]{|z|}e^{i(\theta+2r\pi)/m}e^{i2qm\pi/m}$$

$$= \sqrt[m]{|z|}e^{i(\theta+2r\pi)/m}$$

which, since $0 \le r \le m-1$, is one of the roots we found already.

Roots, Conclusion

▶ **Theorem:** Let $m \ge 1$ be an integer and $z = re^{i\theta}$ with r, $\theta \in \mathbb{R}$, and where θ is given by any branch of arg(z). The m^{th} roots of z are given by

$$z^{1/m} = \sqrt[m]{|z|}e^{i(\theta+2k\pi)/m}, \ k = 0, 1, \dots, m-1$$

▶ **Corollary:** If m and n are positive integers with no common factors, then $(z^{1/n})^m = (z^m)^{1/n}$ and this common number, denoted by $z^{m/n}$ is given by

$$z^{m/n} = \sqrt[n]{|z|^m} e^{im(\theta + 2k\pi)/n}, \quad k = 0, 1, \dots, n-1$$

Example

Find all 6th roots of
$$z = \frac{2i}{1+i}$$
.

mth roots of unity

- ▶ Consider the special case $z = 1 = e^{i \cdot 0}$
- ▶ Here the m^{th} roots are $\zeta = e^{i2k\pi/m}, k = 0, 1, ..., m-1$
- This gives roots

$$(e^{i2\pi/m})^0 = 1$$
 $(e^{i2\pi/m})^1 = \omega_m$
 $(e^{i2\pi/m})^2 = \omega_m^2$
 \vdots
 $(e^{i2\pi/m})^{m-1} = \omega_m^{m-1}$

mth roots of unity, continued

▶ So the m^{th} roots of unity are $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$

▶ Here $\omega_m = e^{j2\pi/m}$ is called a primitive m^{th} root of unity since all the other m^{th} roots of 1 can be found by raising ω_m to positive integer powers.

Definition: ω is called a primitive m^{th} root of unity if $\omega^m = 1$, but $\omega^q \neq 1$ for $1 \leq q \leq m - 1$.