Math 372 - Introductory Complex Variables

G.Pugh

Jan 16 2017

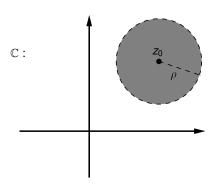
1.6 - Planar Sets

Open Disks

Definition: Let $z_0 \in \mathbb{C}$ and $\rho > 0$ be real. The set

$${z: |z - z_0| < \rho}$$

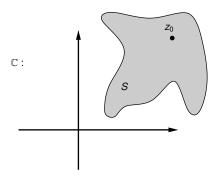
is called an open disk of radius ρ and centre z_0 . The set is sometimes called a circular neighbourhood of z_0 .



Interior Point

Definition: Let $S \subset \mathbb{C}$ be a set and $z_0 \in S$. z_0 is an interior point of S if there is some circular neighbourhood of z_0 completely contained in S. That is, there is some $\rho > 0$ such that

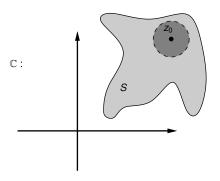
$$\{z: |z-z_0|<\rho\}\subset S$$

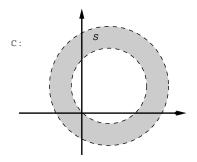


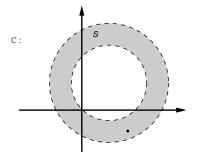
Interior Point

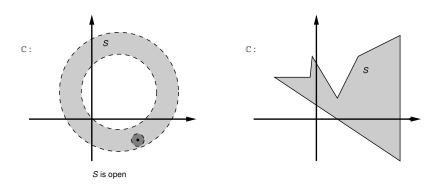
Definition: Let $S \subset \mathbb{C}$ be a set and $z_0 \in S$. z_0 is an interior point of S if there is some circular neighbourhood of z_0 completely contained in S. That is, there is some $\rho > 0$ such that

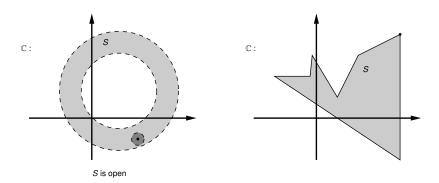
$$\{z: |z-z_0|<\rho\}\subset S$$

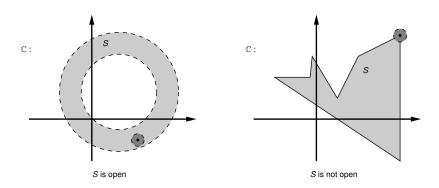






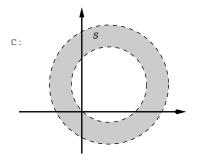






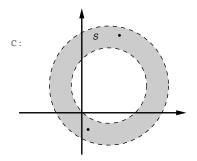
Connected Set

Definition: An open set $S \subset \mathbb{C}$ if connected if any two points S can be joined by a path consisting of a finite number of line segments which lie entirely in S.



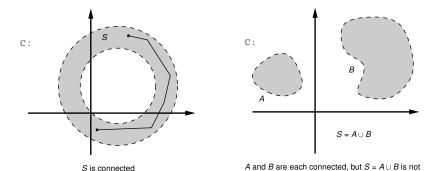
Connected Set

Definition: An open set $S \subset \mathbb{C}$ if connected if any two points S can be joined by a path consisting of a finite number of line segments which lie entirely in S.



Connected Set

Definition: An open set $S \subset \mathbb{C}$ if connected if any two points S can be joined by a path consisting of a finite number of line segments which lie entirely in S.



Domain, Boundary Point, Closed sets

Definition: A domain is an open connected set.

Definition: Let $S \subset \mathbb{C}$. z_0 is called a boundary point of S if every circular neighbourhood of z_0 contains at least one point in S and one point not in S.

Definition: A set $S \subset \mathbb{C}$ is called closed if it contains all of its boundary points.

Bounded sets, Compact sets, Regions

Definition: A set $S \subset \mathbb{C}$ is bounded if there is $R \in \mathbb{R}$ such that |z| < R for every $z \in S$.

Definition: A $S \subset \mathbb{C}$ is compact if it is both closed and bounded.

Definition: A region is a domain together with some, none, or all of its boundary points.

Example

Let *S* be the set of complex numbers which satisfy $1 < (\text{Im}(z))^2 < 4$.

- 1. Is S open?
- 2. Is S connected?
- 3. Is S a domain?
- 4. Is S bounded?
- 5. Describe the boundary points.
- 6. Is S a region?