Math 372 - Introductory Complex Variables

G.Pugh

Feb 17 2017

4.1 - Contours

Smooth Arcs and Curves

- ▶ **Defintion:** The set of points $\gamma = \{z(t) \mid a \le t \le b\}$ is called a smooth arc if on [a, b]
 - (i) z(t) is continuously differentiable
 - (ii) $z'(t) \neq 0$
 - (iii) z(t) is one to one (i.e. if $z(t_1) = z(t_2)$ then $t_1 = t_2$.)
- $ightharpoonup \gamma$ is called a smooth closed curve if (i) and (ii) hold, and z(t) is one to one on [a,b) with z(a)=z(b) and z'(a)=z'(b)
- ▶ Here z(t) is called an admissible parametrization of γ .

Smooth Arcs and Curves: Examples

Example: $z(t) = e^{it}$, $0 \le t \le 2\pi$:

Smooth Arcs and Curves: Examples

Example:
$$z(t) = t + it^2, -1 \le t \le 1$$
:

Directed Smooth Arcs and Curves

Notice:

► The direction of increasing t is indicated on graphs, giving directed smooth curves

 There are many possible admissible parametrizations for a given arc or curve. For example,

$$z(t) = \cos(t) + i\cos^2 t$$
, $-\pi \le t \le \pi$

is an admissible parametrization for the second example above.

Contours

- ▶ **Defintion:** A contour Γ is either a single point, or a finite sequence of directed smooth curves $\gamma_1, \gamma_2, \ldots, \gamma_n$ such that the terminal point of γ_k coincides with the initial point of γ_{k+1} for each $k=1,2,\ldots,n-1$.
- To express that Γ consists of its set of directed smooth curves we write

$$\Gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_n$$

 To express a contour consisting of the same points as Γ but traversed in the opposite direction we write -Γ.

Contours: Examples

Example: a general contour:

Contours: Examples

Definition: a contour Γ is called simple if for any admissible parametrization z(t), $a \le t \le b$, z(t) is one to one on [a,b). That is, if $z(t_1) = z(t_2)$ then either $t_1 = a$ and $t_2 = b$, or $t_1 = b$ and $t_2 = a$.

A simple closed contour

Contours: Examples

A contour that has multiple points is not simple:

A closed contour, but not simple

Jordan Curve Theorem

Theorem: Any simple closed contour separates the plane into two domains, each having the curve as its boundary. The interior domain is bounded, while the exterior is unbounded.

Definition: A directed simple closed contour is positively oriented if it is traversed in a counter-clockwise direction. That is, an observer traversing the contour in the positive direction will always have the interior to his or her left.

Length of a curve

If $z(t)=x(t)+iy(t), \ a\leq t\leq b$ is an admissible parametrization of the smooth curve γ , then from real variable theory $(x(t),y(t)), \ a\leq t\leq b$ is a parametrization of the corresponding curve in \mathbb{R}^2 . The length of the curve is then

$$\ell(\gamma) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_a^b \left| \frac{dz}{dt} \right| dt$$

An important parametrization

▶ The circle of radius ρ and centre z_0 (with positive orientation) has parametrization

$$z(t) = z_0 + \rho e^{it}, \quad 0 \le t \le 2\pi$$

▶ The length of this curve is

$$\int_0^{2\pi} \left| \frac{dz}{dt} \right| dt = \int_0^{2\pi} \left| \frac{d}{dt} [z_0 + \rho e^{it}] \right| dt$$

$$= \int_0^{2\pi} \left| i\rho e^{it} \right| dt$$

$$= \rho \int_0^{2\pi} dt$$

$$= 2\pi \rho$$

4.2 - Contour Integrals

Formal Definition

Let γ be a smooth curve and f(z) a complex valued function defined on γ . We wish to define

$$\int_{\gamma} f(z) \, dz$$

- Let $n \in \mathbb{N}$ and divide γ into n sub-arcs $\gamma_1, \gamma_2, \ldots, \gamma_n$ using points z_0, z_1, \ldots, z_n . Call this a partition \mathcal{P}_n with mesh $\mu(\mathcal{P}_n) = \max_{1 \le k \le n} \ell(\gamma_k)$
- From each sub-arc γ_k select any point c_k and construct the Riemann Sum

$$S(\mathcal{P}_n) = \sum_{k=1}^n f(c_k)(z_k - z_{k-1})$$

continued...

Formal definition, continued

▶ If $\lim_{\substack{n \to \infty \\ \mu(\mathcal{P}_n) \to 0}} S(\mathcal{P}_n) = L$ and this limit is the same for every sequence of Riemann Sums then we define

$$\int_{\gamma} f(z) \, dz = L$$

and say that f is integrable along γ .

Computing Definite Integrals

Notice: if γ is a real interval [a, b] and f is real valued on γ , then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(t) dt$$

Many of the standard proofs for real variables carry over to contour integrals.

▶ **Theorem:** If f is continuous along the directed smooth curve γ then f is integrable along γ .

Computing Definite Integrals, continued

▶ **Theorem:** If γ is the real interval [a, b] and f(z) = u(z) + iv(z) where u and v are real and continuous then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$$

Furthermore, if there is an antiderivative F such that F'(t) = f(t) on [a, b] then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(t) dt = F(b) - F(a)$$

Computing Definite Integrals, continued

Theorem: Let f be continuous on the directed smooth curve γ having admissible parametrization z(t), $a \le t \le b$. Then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$