Question 1:

(a) Find the linear approximation $T_{1}(x)$ about $a=1$ for $f(x)=\sqrt{x+3}$.
(b) Suppose you use your result in part (a) to approximate $\sqrt{4.1}$. Give an error bound on the resulting approximation.
Note: There is no need to actually calculate the approximation to $\sqrt{4.1}$, you are only being asked to determine a bound on the associated error. Express your answer as a single simplified fraction.

Question 2:

(a) Find $T_{3}(x)$, the Taylor polynomial of degree 3, for $f(x)=x \ln (x)-x$ about $a=1$.
(b) Give an error bound if $T_{3}(x)$ in part (a) is used to approximate $f(1 / 2)$.

Note: Again with this question: there is no need to actually calculate the approximation to $f(1 / 2)$, you are only being asked to determine a bound on the associated error. Express your answer as a single simplified fraction.

Question 3:

(a) Find the first three nonzero terms of the Maclaurin series for $f(x)=e^{\left(x^{2}\right)} \cos (3 x)$.
(b) The degree 6 term of the Maclaurin series for $f(x)=e^{\left(x^{2}\right)} \cos (3 x)$ is $\frac{67 x^{6}}{240}$. Determine $f^{(6)}(0)$, the sixth derivative of f at 0 . Simplify your final answer.

Question 4: The Maclaurin series for $e^{\arctan (x)}$ is

$$
e^{\arctan (x)}=1+x+\frac{x^{2}}{2}-\frac{x^{3}}{6}-\frac{7 x^{4}}{24}+\cdots
$$

Use this to find the first three nonzero terms of the Maclaurin series for $g(x)=\frac{e^{\arctan (x)}}{1+x^{2}}$. (There are several ways to do this, but one way is much easier than the others.)

Question 5: Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{x^{5} \sin (x)-e^{\left(x^{6}\right)}+1}{x^{8}}
$$

Question 6: Find the radius of convergence R and open interval of convergence \mathcal{I} for the power series

$$
f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} k!x^{2 k}}{3^{k}}
$$

Question 7: Find the radius of convergence R and open interval of convergence \mathcal{I} for the power series

$$
f(x)=\sum_{k=0}^{\infty} \frac{(x+2)^{k}}{(k+1)^{3} 2^{k}}
$$

