- 1. (a) Determine the limit (with proof) or show that it does not exist: $\lim_{x \to c} \sqrt{x}$ where $c \ge 0$.
 - (b) Determine the limit (with proof) or show that it does not exist: $\lim_{x\to c} (x^2 + x + 1)$ where c is any real number.
- 2. (Squeeze Law revisited) Let $S \subset \mathbb{R}$ and c be a cluster point of S. Suppose $f : S \to \mathbb{R}$, $g : S \to \mathbb{R}$ and $h : S \to \mathbb{R}$ are such that

$$f(x) \leq g(x) \leq h(x)$$

for every $x \in S$, and that

$$\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L \in \mathbb{R} .$$

Prove that $\lim_{x\to c} g(x) = L$.

- 3. Let $S \subset \mathbb{R}$, c be a cluster point of S, and suppose that $f : S \to \mathbb{R}$ is bounded. Show that there exists a sequence $\{x_n\}_{n=1}^{\infty}$ such that each $x_n \in S \setminus c$, $x_n \to c$, and $\{f(x_n)\}_{n=1}^{\infty}$ converges.
- 4. Prove that $f: (0, \infty) \to \mathbb{R} : x \mapsto 1/x$ is continuous using the definition of continuity.
- 5. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = egin{cases} x & ext{if } x \in \mathbb{Q} \ x^2 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

is continuous at 1 but discontinuous at 2.

- 6. Suppose $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and that f(r) = g(r) for every $r \in \mathbb{Q}$. Prove that f(x) = g(x) for every $x \in \mathbb{R}$.
- 7. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and that f(c) > 0. Show that there is some $\alpha > 0$ such that f(x) > 0 for every $x \in (c \alpha, c + \alpha)$.