- 1. Suppose $\{x_n\}_{n=1}^{\infty}$ is bounded. Show that $\lim_{n\to\infty} x_n = x$ if and only if every subsequence converges to x.
- 2. **Definition:** $x \in \mathbb{R}$ is called a **cluster point** of $S \subset \mathbb{R}$ if for every $\epsilon > 0$, $(x \epsilon, x + \epsilon) \cap S \setminus x \neq \emptyset$.

Prove that if $S \subset \mathbb{R}$ is bounded and infinite then there is at least one cluster point of S. (see exercise 2.3.9 of text for a hint.)

- 3. Suppose $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences and that $\lim_{n\to\infty} y_n = 0$. Further suppose that for each $k \in \mathbb{N}$, for any $m \ge k$ we have $|x_m x_k| \le y_k$. Prove that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
- 4. (a) Prove that for $r \neq 1$

$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$$

(b) Prove that for -1 < r < 1

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

5. Prove that if $\sum_{k=1}^{\infty} x_k$ converges then $\sum_{k=1}^{\infty} (x_{2k} + x_{2k+1})$ also converges.

6. Suppose $\sum_{n=1}^{\infty} x_n$ is conditionally convergent, and define

$$a_n = \max \{x_n, 0\}$$

 $b_n = \min \{x_n, 0\}$

Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both divergent.

- 7. (A bit more challenging) Find an infinite collection of closed discs D_1 , D_2 , D_3 , ... in the plane with centres c_1 , c_2 , c_3 , ..., respectively, such that
 - (a) Every line in the plane intersects at least one of the D_i , and
 - (b) The sum of the areas of the D_i is finite.

(hint: Let $c_n = \sum_{k=1}^n 1/k$. Think about covering the positive x-axis with disks having centres $(c_n, 0)$ and radii which ensure the disks overlap. Then apply this same construction to the remaining sections of the axes.)