[3]

[4]

Question 1:

(a) Simplify to a single real number:

$$\frac{r^{-1} + q^{-1}}{r^{-1} - q^{-1}} \cdot \frac{r - q}{r + q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q^{-1} + r^{-1} q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 - r q} = \frac{1 + r q^{-1} - r^{-1} q}{1 -$$

(b) Simplify:
$$\frac{4(x^2-1)^3 + 8x(x^2-1)^4}{16(x^2-1)^3} = \underbrace{4(x^2-1)^3 \left[1 + 2x(x^2-1)\right]}_{416(x^2-1)^3}$$
$$= \underbrace{2x^3 - 2x + 1}_{4}$$

$$= \underbrace{\left[\begin{array}{c} a\left(\sqrt{a+b}+1\right) \\ a+b-1 \end{array}\right]}$$

[3]

Question 2:

(a) Solve for x:

$$4(-2x+1) = 6 - (2x-4)$$

$$-8x+4 = 6-2x+4$$

$$-6x = 6$$

$$x = -\frac{6}{6}$$

$$\sqrt{x-1}$$

[3]

(b) Solve for x:

$$\frac{1}{15}(2x+5) = \frac{x+2}{9}$$

$$9(2x+5) = 15(x+2)$$

$$18x+45 = 15x+30$$

$$3x = -15$$

$$x = -5$$

[3]

(c) \$750 is invested for 36 months at a certain rate of simple interest. At the end of the 36 months the total value of the investment is \$840. What is the rate of simple interest? (Express your answer as a percentage rounded to two decimal places.)

$$P = 750$$

 $t = \frac{36}{12} = 3 \text{ grs.}$
 $A = 840$
 $r = ?$

A= P(1+rt)
$$= \frac{A-1}{P-1}$$

$$= \frac{840-1}{750-1}$$

$$= 0.04 = 4.00\%$$

[4]

Question 3:

(a) \$10,000 is split between two investments: one pays 3% simple interest and the second pays 5% simple interest. After two years the investments have earned \$840 interest in total. How much was originally invested at the 5% rate? (Round your answer to the nearest dollar.)

Let
$$X = \text{amount invested at } 5\%$$
.

\$\tilde{\chi} \text{ 10000} - \text{x} = \text{amount invested at } 3\%.

\$\tau = 2 \text{ for both investments.}

Using $I = R + t$:

\$\left(\chi)(\delta.05)(2) + \left(10000 - \text{x}\right)(0.03)(2) = \text{840}.

\$\text{2.}(0.1) \times + \left(600 - \left(0.06)\times = \text{840}.

\$\left(0.04)\times = \text{240}.

\$\left(\chi = 6000)\$.

\$\text{3.}

(b) Mary and Janet run a race. Mary runs at 14 km/h while Janet runs at 10 km/h. If they start at the same time, how long will it take them to be 3 km apart? (Round your answer to one decimal place.)

Let t be the required time in hours.
Using dert, in thours Many runs 14t hm,
while Janet runs 10t hm.

$$4t = 3$$

$$t = \frac{3}{4} hr$$

.. After 3/4 hr they will be 3 hm apart.

[5]

Question 4:

(a) Solve for x:

$$-3x^{2} + 4x = -1$$

$$3x^{2} - 4x - 1 = 0$$

$$\alpha = 3, b = -4, c = -1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(3)(-1)}}{2(3)}$$

$$= \frac{4 \pm \sqrt{28}}{6}$$

$$= \frac{4 \pm \sqrt{28}}{6}$$

$$= \frac{4 \pm \sqrt{27}}{6}$$

(b) A picture is of size 10 inches by 12 inches and we wish to put a border around the outside. The border will have an area of 48 square inches and have the same width on all four sides. Determine the width of the border.

Let $\chi =$ width of border.

[5]

Question 5:

(a) Solve for x:

$$\frac{2x+1}{x-2} + \frac{3}{x} = \frac{-6}{x^2 - 2x}$$

$$\chi(x-2) \left[\frac{2x+i}{x-2} + \frac{3}{x} \right] = \left[\frac{-6}{x(x-3)} \right] \chi(x-2)$$

$$\chi(3x+i) + 3(x+i) = -6$$

$$2x + x + 3x - x + 6 = 0$$
as noted above
$$2x (x+2) = 0$$

$$\frac{2x+i}{x-2} + \frac{3}{x} = \frac{-6}{x^2 - 2x}$$

$$\frac{2(c)+i}{x-2-2} + \frac{3}{x} = \frac{-6}{(c2)^2 - 2(c2)}$$

$$\frac{3-6}{4} = \frac{2}{3} = \frac{3}{4}$$
(b) Solve for x:

$$(\sqrt{x+2}) = (1 - \sqrt{3x+7})^2$$

$$x+2 = (1 - 2\sqrt{3x+7})^2$$

$$x+2 = (1 - 2\sqrt{3x+7})^2$$

$$x+3 = (2x+6) = (2x+7)^2$$

$$x+4 = (2x+6) = (2x+6) = (2x+6)$$

$$x+4 =$$

p. 6 of 7

[5]