Question 1:

(a) Use the trapezoind rule on 3 subintervals to approximate $\int_{0}^{3} e^{x(1-x)(2-x) / 6} d x$. (Simplify your final answer.)
(b) The second derivative of $f(x)=e^{x(1-x)(2-x) / 6}$ can be shown to be between -1 and 15 on the interval $[0,3]$. Use this information to determine an error bound $\left|E_{T_{3}}\right|$ on your approximation in part (a). Simplify your final answer.
(Recall: the error in using the trapezoid rule to approximate $\int_{a}^{b} f(x) d x$ using n subintervals is at most $\frac{K(b-a)^{3}}{12 n^{2}}$ where $\left|f^{\prime \prime}(x)\right| \leq K$ on $\left.[a, b].\right)$

Question 2:

(a) Determine whether the following improper integral is convergent or divergent. If convergent, evaluate the integral. Make proper use of any required limits:

$$
\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} d x
$$

(b) Use the comparison theorem to determine whether the following integral is convergent or divergent:

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x
$$

Question 3: The region bounded by the curves $y=x^{2}$ and $y=1$ is divided into two regions by the line $y=b$. Find b if the two regions have equal areas.

Question 4: The base of the solid S is the triangular region in the $x y$-plane with vertices at $(0,0),(1,0)$ and $(0,1)$. Cross-sections perpendicular to the y-axis are squares. Determine the volume of S.

Question 5: The region in the first quadrant bounded between $y=1-x^{2}$ and $y=1-x$ is rotated about the horizontal line $y=1$. Determine the volume of the resulting solid (both the washer and cylindrical shells methods can be used here.)

Question 6: The region bounded by the curves $y=e^{x}, y=x, x=0$ and $x=1$ is rotated about the vertical line $x=-2$. Determine the volume of the resulting solid.

