
Math 122 - Notes on Series Spring 2016

1 Introduction

These notes give a brief introduction to the representation of functions using series (that is, the sum of
an infinite number of terms.) For example, in a precalculus course you may have seen the geometric
series

1

1− x
= 1 + x + x2 + x3 + x4 + · · ·

which is true for any value of x between −1 and 1. By writing equality here we mean that the difference
between 1/(1−x) and 1+x+x2+x3+x4+ · · ·+xn approaches zero as n grows to infinity. Many other
functions have such representations. For example, the familiar exponential function has representation

ex = 1 + x +
x2

2
+

x3

2 · 3
+

x4

2 · 3 · 4
+ · · ·

while for the sine function,
sin x = x − x3

2 · 3
+

x5

2 · 3 · 4 · 5
− · · ·

These last two series are valid for all real numbers x .

These infinite series representations are important for a number of reasons. One is that they form the
basis of the methods used to evaluate functions. At the most fundamental level, numerical calculation
(by human or machine) involves only the operations of addition, subtraction, multiplication and division,
the same four operations required to add up the terms in a series. If, for example, sin (37◦) is required in
a calculation, how do we (or our calculators) come up with the decimal approximation 0.60181502315?
The procedure used is based on the series representation of sin x above.

Another important reason for the study of series is found in the solution of real-world physics and
engineering problems. Often the solutions to such problems cannot be expressed as finite combinations
of elementary functions (polynomial, trigonometric, exponential, etc) and an infinite series is the only
known solution representation.

2 Some Definitions

To describe our results we need a few definitions. These are likely already familiar to you but we include
them here for review and reference.

Definition 1

An interval is a set of numbers which form a segment of the real number line. For example,
(0, 1), [0, 1], (−3,∞), (−∞, π], (−∞,∞) are all intervals.
An open interval is an interval which does not include its upper and lower boundaries and
so uses only ”(” and ”)” in its representation. Examples of open intervals are

(0, 1), (−2,∞) and (−∞,∞) .

A closed interval is an interval which includes it’s upper and lower boundaries, such as
[0, 1] or [e, π] .
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The letter I is often used to denote a general interval.

Definition 2

A function f is differentiable at a point x = a if f ′(a) exists, meaning that the limit defining
the derivative

lim
h→0

f (a + h)− f (a)

h
exists.
A function is n-times differentiable at a point x = a if the nth derivative f (n)(a) exists
(and consequently f ′(a), f ′′(a), . . . , f (n)(a) all exist.)
A function is differentiable on an open interval I if it is differentiable at every point x
in I, and similarly for n-times differentiable on an open interval.
For example, f (x) = x7/3 is twice differentiable on (−1, 1) since f ′′(x) = (28/9)x1/3 exists
for every x in (−1, 1). However, f (x) = x7/3 is not 3-times differentiable on (−1, 1) since

f ′′′(0) = lim
h→0

f ′′(0 + h)− f ′′(0)

h

= lim
h→0

(28/9)h1/3 − 0

h

= lim
h→0

(28/9)h−2/3

fails to exist.

3 Taylor & Maclaurin Polynomials

Before looking at infinite series, we first develop a class of polynomials useful in the approximation of
functions: Taylor polynomials. The simplest case of a Taylor polynomial is something you have seen
already when you studied linear approximation, so we’ll begin by reviewing that topic and extending it
with some new theory.

3.1 Linear Approximation

Recall the linear approximation (or tangent line approximation) to a function f at a point x = a:
If f is differentiable at a, then for x near a

f (x) ≈ f (a) + f ′(a)(x − a) .

Here y = f (a) + f ′(a)(x − a) is just the equation of the tangent line to y = f (x) at the point where
x = a, so linear approximation is simply the idea of using the tangent line to approximate function values.

Letting T1(x) = f (a) + f ′(a)(x − a), the function describing the tangent line, notice that

T1(a) = f (a) and T ′1(a) = f ′(a) .
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a

x

y

y = f (x)

y = T1(x)

Figure 1: f (x), T1(x)

That is, the relatively simple function T1(x) agrees with f (x) in function value and first derivative at
x = a. The function T1(x) is called the Taylor polynomial of degree 1 for f at a. We see from plots
of y = f (x) and y = T1(x) in Figure 1 that for x near a the vertical distance between points (x , f (x))
and (x ,T1(x)) is small, but that this distance increases as x moves away from a.

We would like to say something more precise about how good the approximation f (x) ≈ T1(x) is. Let
R1(x) be the difference between f (x) and T1(x):

R1(x) = f (x)− [f (a) + f ′(a)(x − a)] .

Think of R1(x) as the error in the approximation f (x) ≈ f (a) + f ′(a)(x − a). How large can R1(x)
possibly be? The answer is given by the following theorem.

Theorem 1

Suppose that f is twice differentiable on an open interval I containing containing a. Then
for each x in I

R1(x) =
f ′′(z)

2
(x − a)2

for some z between a and x .

Proof

The proof uses Rolle’s theorem applied to a specially constructed function. Suppose a and
x are in I, x 6= a, and consider x fixed (that is, a constant). Define

g(t) = f (x)− f (t)− f ′(t)(x − t)− R1(x)
(x − t)2

(x − a)2
.
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Notice that g(a) = g(x) = 0, so by Rolle’s Theorem there is some number z strictly between
a and x such that g ′(z) = 0. Now

g ′(t) = 0− f ′(t)− f ′′(t)(x − t) + f ′(t) + 2R1(x)
(x − t)

(x − a)2

= −f ′′(t)(x − t) + 2R1(x)
(x − t)

(x − a)2

so
g ′(z) = −f ′′(z)(x − z) + 2R1(x)

(x − z)

(x − a)2
= 0

giving
R1(x) =

f ′′(z)

2
(x − a)2

�

Notice here that z is some (unknown) number between a and x , so we cannot in general give the exact
value of R1(x). However, by analyzing f ′′ we can establish an upper bound on |f ′′(z)| (that is, a
greatest possible size), and thereby give a bound on the error term |R1(x)| itself. This is illustrated in
the following example.

Example 1

Let f (x) = x + ln x .

(i) Find the linear approximation to f at a = 1.
(ii) Use the linear approximation to approximate f (1.1).
(iii) Give an error bound for your approximation.

Solution

(i) Here
f (x) = x + ln x and f ′(x) = 1 +

1

x
.

Evaluating these at a = 1 gives

f (1) = 1 and f ′(1) = 2,

so we have

T1(x) = f (a) + f ′(a)(x − a)

= 1 + 2(x − 1)

(ii) The linear approximation is f (1.1) ≈ T1(1.1) = 1 + 2(1.1− 1) = 1.2
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(iii) We require an upper bound on |R1(1.1)|. By Theorem 1

R1(1.1) =
f ′′(z)

2
(1.1− 1)2

for some 1 < z < 1.1. Here f ′′(z) = −1/z2, so

|R1(1.1)| =
∣∣∣∣−12z2

(1.1− 1)2
∣∣∣∣ .

Now ask: what is the largest possible size of |R1(1.1)| for 1 < z < 1.1? In this case,
taking z as small as possible makes |R1(1.1)| as large as possible, so setting z = 1 we
have

|R1(1.1)| ≤
∣∣∣∣ −12(1)2

(1.1− 1)2
∣∣∣∣ = 1

200
.

That is,
|f (1.1)− T1(1.1)| ≤

1

200

�

This example shows that T (1.1) is within 1/200 or 0.005 of the true value of f (1.1). A calculator check
shows that this is indeed the case:

|f (1.1)− T (1.1)| = |(1.1 + ln (1.1))− (1 + 2(1.1− 1))| .= 0.0047 ,

a remarkably accurate result given the simple form of the approximating function T1(x). In the sections
to follow we will see how to improve the accuracy even further by extending T1(x) to a more general
polynomial.

3.2 Taylor & Maclaurin Polynomials

Let n be a positive integer and suppose that f is n-times differentiable at x = a. Let’s now generalize the
linear approximation idea by finding a polynomial Tn(x) of degree n which agrees with f (x) in function
value and first n-derivatives at x = a, i.e.

Tn(a) = f (a),

T ′n(a) = f ′(a),

T ′′n (a) = f ′′(a),

...
T (n)

n (a) = f (n)(a)

Since Tn has degree n it can be expressed in the general form

Tn(x) = b0 + b1(x − a) + b2(x − a)2 + · · ·+ bn(x − a)n

for some constants b0, b1, . . . , bn. To determine the constants b0, b1, . . . , bn proceed as follows:
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H Since Tn(a) = f (a) we must have

f (a) = b0 + b1(a − a) + b2(a − a)2 + · · ·+ bn(a − a)n

so that b0 = f (a).

H Since T ′n(a) = f ′(a) we must have

f ′(a) = b1 + 2b2(a − a) + · · ·+ nbn(a − a)n−1

so that b1 = f ′(a).

H Since T ′′n (a) = f ′′(a) we must have

f ′′(a) = 2b2 + (3)(2)b3(a − a) + · · ·+ n(n − 1)bn(a − a)n−2

so that b2 =
f ′′(a)

2
.

H Continuing in this way we find in general

bk =
f (k)(a)

k!
, k = 0, 1, . . . , n

We can now define the Taylor polynomial of degree n for f at a:

Definition 3

If f is n-times differentiable at a, the Taylor polynomial of degree n for f at a is

Tn(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · ·+ f (n)(a)

n!
(x − a)n

If a = 0, Tn(x) is instead called a Maclaurin polynomial of degree n for f .

Some comments about this definition:

(i) Here ’!’ is factorial notation. n! is read ”n factorial”, so 5! is read ”five-factorial”. The factorial
function is defined on the non-negative integers as follows:

0! = 1

1! = 1

2! = (1)(2)

3! = (1)(2)(3)

...
k! = (1)(2) · · · (k)

This can also be defined recursively as 0! = 1 and k! = k(k − 1)! for k ≥ 1 .
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a

x

y

y=f (x)

y=T1(x)

y=T2(x)

y=T5(x)

Figure 2: f (x), T1(x), T2(x), T5(x)

(ii) Notice that the first two terms of Tn(x) give T1(x), the first three terms give T2(x), and so on.
In other words, once you find Tn(x) you also have Tk(x) for k = 1, 2, . . . , n − 1 .

Since Tn(x) agrees with f (x) in function value and first n-derivatives at x = a we expect f (x) ≈ Tn(x)
for x near a. See Figure 2 for an illustration of the improved approximations given by T1(x), T2(x) and
T5(x) .

3.3 Taylor’s Theorem

As with linear approximation, when using a Taylor polynomial to approximate a function we would like an
estimate of the error involved. There are several methods for doing this, one of which is a generalization
of the error estimate we found for linear approximation. To state the result let

Rn(x) = f (x)− Tn(x)

be the error in the approximation.

Theorem 2

Suppose f is (n+1)-times differentiable on an open interval I containing containing a. Then
for each x in I

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − a)n+1

for some z between a and x .
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Proof

The proof is nearly identical to the n = 1 case we saw before. Suppose a and x are in I,
x 6= a, and consider x fixed. Define

g(t) = f (x)− f (t)− f ′(t)(x− t)− f ′′(t)

2!
(x−t)2−· · ·− f (n)(t)

n!
(x−t)n−Rn(x)

(x − t)(n+1)

(x − a)(n+1)

and notice that g(a) = g(x) = 0. By Rolle’s Theorem there is some number z strictly
between a and x such that g ′(z) = 0. Now differentiating and simplifying we find

g ′(t) = − f (n+1)(t)

n!
(x − t)n + (n + 1)Rn(x)

(x − t)n

(x − a)(n+1)

so that
g ′(z) = − f (n+1)(z)

n!
(x − z)n + (n + 1)Rn(x)

(x − z)n

(x − a)(n+1)
.

Setting g ′(z) = 0 and isolating Rn(x) then gives

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − a)n+1 .

�

Putting all this together we have the formal statement of Taylor’s Theorem, also known as Taylor’s
Formula:

Taylor’s Theorem

Suppose f is (n+1)-times differentiable on an open interval I containing containing a. Then
for each x in I

f (x) = f (a)+f ′(a)(x−a)+ f ′′(a)

2
(x−a)2+ f ′′′(a)

3!
(x−a)3+· · ·+ f (n)(a)

n!
(x−a)n+ f (n+1)(z)

(n + 1)!
(x−a)n+1

where z is some number between a and x .

Let’s revisit our first example and improve the approximation:

Example 2

Let f (x) = x + ln x .

(i) Find T3(x), the Taylor polynomial of degree 3 for f at a = 1.
(ii) Use T3(x) to approximate f (1.1).

(iii) Give an error bound for your approximation.

version 2.0 - January 19, 2016 p. 8 of 30



Math 122 - Notes on Series Spring 2016

Solution

(i) This time

f (x) = x + ln x ,

f ′(x) = 1 +
1

x
,

f ′′(x) =
−1
x2

and f ′′′(x) =
2

x3
.

Evaluating these at a = 1 gives

f (1) = 1, f ′(1) = 2, f ′′(1) = −1 and f ′′′(1) = 2

so we have

T3(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3

= 1 + 2(x − 1)− 1

2!
(x − 1)2 +

2

3!
(x − 1)3

= 1 + 2(x − 1)− 1

2
(x − 1)2 +

1

3
(x − 1)3

(ii) The approximation is

f (1.1) ≈ T3(1.1)

= 1 + 2(1.1− 1)− 1

2
(1.1− 1)2 +

1

3
(1.1− 1)3

= 1 +
1

5
− 1

200
+

1

3000

=
1793

1500

(iii) We require a bound on |R3(1.1)|. By Theorem 2

R3(1.1) =
f (4)(z)

4!
(1.1− 1)4

for some 1 < z < 1.1. Here f (4)(z) = −6/z4, so

|R4(1.1)| =
∣∣∣∣ −64!z4

(1.1− 1)4
∣∣∣∣ = ∣∣∣∣−14z4

(0.1)4
∣∣∣∣ .
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Now ask: what is the largest possible size of |R3(1.1)| for 1 < z < 1.1? Again in this
case, taking z as small as possible makes |R3(1.1)| as large as possible, so setting z = 1
we have

|R3(1.1)| ≤
∣∣∣∣ −14(1)4

(0.1)4
∣∣∣∣ = 1

40,000
= 0.000 025 .

That is,
|f (1.1)− T3(1.1)| ≤ 0.000 025 .

�

Section 3 Exercises
1. (a) Determine T1(x) for f (x) =

√
x2 + 9

at a = −4 and use it to approximate
f (−3.9) .

(b) Give an error bound for your approxima-
tion in part (a)

2. Use a linear approximation T1(x) for f (x) =
x/(x + 1) to approximate f (1.3).

3. Find T1(x) and T2(x) for f (x) = (1+ x)k at
a = 0 (k is a constant here).

4. Use T2(x) from the previous exercise to ap-
proximate 3

√
1.009 and give an error bound

for your approximation.

5. Find the Taylor polynomial of degree 3 for
f (x) = tan x at a = π/4 .

6. Find the Maclaurin polynomial of degree 3 for
f (x) = xe−x .

7. Find the Maclaurin polynomials of degree 1,
2, 3 and 4 for f (x) = 2 + 3x − 5x2 − 7x3 +

11x4 . What do you notice?

8. Find the Taylor polynomial of degree 3 for
f (x) = 3+ x +4x2− 2x3 at a = 2, and then
expand and simplify your result. What do you
notice?

9. (a) Find the Maclaurin polynomial of de-
gree 5 for f (x) = sin x .

(b) Determine the value of b such that your
approximation in part (a) is accurate
to within 0.000 05 for x in the inter-
val (−b, b) . [This one is tricky: here
T5(x) = T6(x) (why?) so b can be de-
termined by analyzing either R5(x) or
R6(x), each resulting in a different b
value.]

10. Find the Maclaurin polynomial of degree 4 for
f (x) = ex . Based on your work, what would
be the Maclaurin polynomial of degree n?

Answers
1. (a) T1(x) = 5−

4(x + 4)

5
; f (−3.9) ≈ T1(−3.9) =

123

25

(b) |R1(−3.9)| ≤
9

200[(3.9)2 + 9]3/2
≈ 0.0004

2. T1(x) =
x + 1

4
; f (1.3) ≈ T1(1.3) =

23

40

3. T1(x) = 1 + kx ;T2(x) = 1 + kx +
k(k − 1)

2
x2

4. T2(0.009) =
1,002,991

1,000,000
; |R2(0.009)| ≤

9

2 · 108
= 4.5× 10−8

5. T3(x) = 1 + 2
(
x −

π

4

)
+ 2

(
x −

π

4

)2
+

8

3

(
x −

π

4

)3
6. T3(x) = x − x2 +

x3

2

7. T1(x) = 2 + 3x ;T2(x) = 2 + 3x − 5x2;T3(x) = 2 + 3x − 5x2 − 7x3;
T4(x) = 2 + 3x − 5x2 − 7x3 + 11x4

8. T3(x) = 5− 7(x − 2)− 8(x − 2)2 − 2(x − 2)3;T3(x) = f (x)

9. (a) T5(x) = x −
x3

3!
+

x5

5!

(b) If analyzing R5(x), b = (9/250)
1
6 . If analyzing R6(x),

b = (63/250)
1
7 .

10. T4(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
;

Tn(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+

xn

n!
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4 Taylor & Maclaurin Series

In the previous section we saw that if f has n + 1 derivatives on an open interval I containing a then

f (x) = Tn(x) + Rn(x)

for every x in I. This brings up a natural question: as n increases to∞, can f (x) be somehow expressed
as a polynomial of ”infinite degree”. The answer is, yes, but with conditions.

Definition 4

If f has derivatives of all orders at a then the infinite series (or simply series)

T (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

f ′′′(a)

3!
(x − a)3 +

f (4)(a)

4!
(x − a)4 + · · ·

=
∞∑
k=0

f (k)(a)

k!
(x − a)k

is called the Taylor series for f at a. In the case where a = 0 this series is called the
Maclaurin series for f.1

So if a function has derivatives of all orders at a then we can define its Taylor series T (x), but is
f (x) = T (x)? The answer is given by the following theorem:

Theorem 3

Suppose f has derivatives of all orders on an open interval I containing a and that for each
x in I

lim
n→∞

Rn(x) = 0 .

Then for each x in I we have

f (x) =
∞∑
k=0

f (k)(a)

k!
(x − a)k

and we say that the Taylor (or Maclaurin) series T (x) converges to f (x) on I . The largest
open interval I containing a on which T (x) converges to f (x) is called the open interval
of convergence of the series.

To be precise, when f (x) is equal to it’s Taylor series on an interval I and we write

f (x) =
∞∑
k=0

f (k)(a)

k!
(x − a)k

1Note the introduction of sigma notation
∑

here which is convenient for representing the sum of a large num-
ber of terms, particularly when the terms follow a pattern. See the appendix in the back of Essential Calculus, Early
Transcendentals by James Stewart (1st or 2nd edition) for a review of sigma notation.
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we mean f (x) = lim
n→∞

Tn(x) on I

A measure of caution is necessary when working with Taylor (or Maclaurin) series: although a function
f may have derivatives of all orders at a, so that the Taylor series T (x) is defined, it does not necessarily
follow that f (x) = T (x) when x 6= a. Furthermore, it is possible that a function is equal to its Taylor
series on an interval but not on the entire domain of f . The analysis of Rn(x) as n → ∞ is critical in
the determination of when a function is equal to its Taylor (or Maclaurin) series.

It turns out that many familiar functions are equal to their Taylor (or Maclaurin) series. Before looking
at these we first prove a limit result which often arises in the analysis of Rn(x):

Theorem 4

For each real number x ,
lim
n→∞

|x |n

n!
= 0

Proof

Let x be any fixed real number. If 0 ≤ |x | < 1 then

|x |n

n!
≤ 1

n!
→ 0 as n→∞ .

If |x | ≥ 1, let m be the unique positive integer such that m − 1 ≤ |x | < m. Then

|x |n

n!
=
|x |
1
· |x |
2
· · · |x |

n

=
|x |
1
· · · |x |

m − 1

(
|x |
m
· |x |
m + 1

· · · · |x |
n

)
≤ |x |m−1

(m − 1)!

(
|x |
m

)n−m+1

→ 0 as n→∞ since |x |
m

< 1

In either case, lim
n→∞

|x |n

n!
= 0 . �

As a first example, let’s find the Maclaurin series for f (x) = ex and show that it converges to ex for every
real number x . Because this is such an important Maclaurin series we state the result as a theorem:

Theorem 5

For every real number x ,

ex =
∞∑
k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·
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Proof

Every derivative of ex is again ex , so with a = 0 we have f (0) = f ′(0) = f ′′(0) = · · · =
f (n)(0) = 1. The resulting Maclaurin series for ex is

T (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

=
∞∑
k=0

xk

k!
.

To show that this Maclaurin series is equal to ex for every real number x , consider the error
associated with the Maclaurin polynomial of degree n:

Rn(x) =
f (n+1)(z)

(n + 1)!
xn+1 =

ez

(n + 1)!
xn+1 where z is some number between 0 and x .

We must show that for each x , Rn(x) → 0. If x = 0 then Rn(x) = 0 and we’re done. If
x 6= 0,

|Rn(x)| =
∣∣∣∣ ezxn+1

(n + 1)!

∣∣∣∣
=

ez |x |n+1

(n + 1)!
since ez > 0

≤ e |z||x |n+1

(n + 1)!
since z ≤ |z |

≤ e |x ||x |n+1

(n + 1)!
since |z | < |x |

→ 0 as n→∞ by Theorem 4.

Since |Rn(x)| → 0 so does Rn(x), and so by Theorem 3

ex =
∞∑
k=0

xk

k!

�

Showing that Rn(x)→ 0 is not always so easy and there are other methods for showing that a function
is equal to its Taylor or Maclaurin series. Here is a second example, this time for a function which is not
equal to it’s Maclaurin series on its entire domain, and we’ll use a different method to analyze Rn(x):
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Example 3

Find the Maclaurin series for f (x) = 1

1− x
and determine the open interval of convergence.

Solution

First note that the domain of f is all real numbers excluding x = 1. Evaluating f and its
derivatives at a = 0 we find

f (x) =
1

(1− x)
; f (0) = 1

f ′(x) =
1

(1− x)2
; f ′(0) = 1

f ′′(x) =
2

(1− x)3
; f ′′(0) = 2

f ′′′(x) =
3!

(1− x)3
; f ′′′(0) = 3!

f (4)(x) =
4!

(1− x)4
; f (4)(0) = 4!

and in general,
f (k)(x) =

k!

(1− x)k
; f (k)(0) = k! .

Inserting this into the formula for the Maclaurin series we find

T (x) = 1 + 1 · x +
2

2
x2 +

3!

3!
x3 − 4!

4!
x4 + · · ·

= 1 + x + x2 + x3 + x4 + · · ·

=
∞∑
k=0

xk .

To analyze Rn(x) we’ll use a method that is unique to this example. For any x in the domain
of f , (i.e. x 6= 1),

Tn(x) = 1 + x + x2 + x3 + x4 + · · ·+ xn .

Multiplying both sides of this expression by x gives

xTn(x) = x + x2 + x3 + x4 + · · ·+ xn+1 .
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Substracting the second equation from the first then gives

Tn(x)− xTn(x) = 1 + x + x2 + x3 + x4 + · · ·+ xn

− x − x2 − x3 − x4 − · · · − xn − xn+1 .

Factoring on the left and cancelling on the right results in

(1− x)Tn(x) = 1− xn+1 ,

and isolating Tn(x) then gives

Tn(x) =
1− xn+1

1− x
.

The error term can then be expressed

Rn(x) = f (x)− Tn(x) =
1

1− x
− 1− xn+1

1− x
=

xn+1

1− x
.

Notice here that Rn(x) is the exact error on the domain of f and does not depend on some
unknown z between 0 and x . Furthermore, we see that Rn(x)→ 0 as n→∞ if and only if
|x | < 1, i.e. −1 < x < 1 . Therefore,

1

1− x
=
∞∑
k=0

xk for x in (−1, 1) .

�

The series
1

1− x
=
∞∑
k=0

xk for x in (−1, 1)

from the previous example is called the geometric series and it is useful for constructing new Taylor
series from existing ones as we’ll see in the next section. Other standard series are likewise useful in this
respect so we list them in a table of standard Maclaurin series at the end of this section.

Another important observation about Taylor (and Maclaurin) series is that they contain the Taylor (resp.
Maclaurin) polynomials of every degree for the function in question. For example, using the fact that

ln (1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · on (−1, 1)

we can immediately conclude that, for example, the Maclaurin polynomial of degree 5 for f (x) = ln (1 + x)
is

T5(x) = x − x2

2
+

x3

3
− x4

4
+

x5

5
.

version 2.0 - January 19, 2016 p. 15 of 30



Math 122 - Notes on Series Spring 2016

Maclaurin Series Open Interval of Convergence

ex =
∞∑
k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x − x3

3!
+

x5

5!
− · · · (−∞,∞)

cos x =
∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+

x4

4!
− · · · (−∞,∞)

ln (1 + x) =
∞∑
k=0

(−1)kxk+1

k + 1
= x − x2

2
+

x3

3
− · · · (−1, 1)

1

1− x
=
∞∑
k=0

xk = 1 + x + x2 + x3 + · · · (−1, 1)

arctan x =
∞∑
k=0

(−1)kx2k+1

2k + 1
= x − x3

3
+

x5

5
− · · · (−1, 1)

Section 4 Exercises
1. Show that sin x is equal to its Maclaurin se-

ries on (−∞,∞) .

2. Find the Maclaurin series for f (x) = 2+3x−
5x2− 7x3 +11x4 and state the open interval
of convergence. This example shows that a
Maclaurin (or Taylor) series need not have an
infinite number of non-zero terms.

3. Find the Maclaurin series for f (x) = xex .

4. Find the Taylor series for f (x) = 3+x+4x2−
2x3 at a = 2 and state the open interval of
convergence.

5. Find the Maclaurin series for f (x) =
x2

x + 1
(Hint: to make the calculation of derivatives

easier, use long division of polynomials to first
express f (x) in the form

f (x) = ax + b +
c

x + 1

for suitable a, b and c .)

6. Find the Taylor series at a = 1 for
f (x) =

1

x2
.

7. What is the sum of the infinite series

1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · · ?

8. What is the sum of the infinite series

π − π3

3!
+
π5

5!
+ · · · ?
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9. The Maclaurin series for f (x) = x3e−x
2 is

T (x) =
∞∑
k=0

(−1)k x
2k+3

k!
.

Determine f (13)(0) and f (14)(0) .

10. Use the fact that

1

1− x
=
∞∑
k=0

xk on (−1, 1)

to find a Maclaurin series which is equal to
g(x) =

1

1 + x2
. What is the open interval of

convergence?

Answers
2. T (x) = 2 + 3x − 5x2 − 7x3 + 11x4; (−∞,∞)

3. T (x) =

∞∑
k=0

xk+1

k!

4. T (x) = 5− 7(x − 2)− 8(x − 2)2 − 2(x − 2)3; (−∞,∞)

5. T (x) =

∞∑
k=0

(−1)kxk+2

6. T (x) =

∞∑
k=0

(−1)k (k + 1)(x − 1)k

7. e1 = e

8. sinπ = 0

9. f (13)(0) = −
13!

5!
= 51,891,840 and f (14)(0) = 0

10. T (x) =

∞∑
k=0

(−1)kx2k ; I = (−1, 1)

5 Working with Taylor & Maclaurin Series

Functions that are equal to their Taylor (resp. Maclaurin) series are equal to the limit as n → ∞ of
their Taylor (resp. Maclaurin) polynomials. This fact, together with standard limit laws, allows us to
construct Taylor and Maclaurin series for new functions by combining the Taylor and Maclaurin series of
known functions in much the same way one would treat polynomials.

Theorem 6

Suppose

f (x) =
∞∑
k=0

bk(x − a)k

and g(x) =
∞∑
k=0

ck(x − a)k

are Taylor series representations for f and g at the point a with open intervals of convergence
I1 and I2, respectively. Then on I = I1∩I2, (that is, I is the largest open interval contained
in both I1 and I2),

(i) (f + g)(x) =
∞∑
k=0

pk(x − a)k where pk = bk + ck
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(ii) (f − g)(x) =
∞∑
k=0

pk(x − a)k where pk = bk − ck

(iii) (f g)(x) =
∞∑
k=0

pk(x − a)k where pk =
k∑

j=0

bjck−j

For each of the new series in (i), (ii) and (iii), the open interval of convergence may be I
itself or possibly a larger interval containing I .

In simpler terms, this theorem tells us that the Taylor series for the sum, difference and product of two
functions is found by simply adding, subtracting, and multiplying (respectively) the Taylor series for the
two functions as one would do with polynomials. That this is true for sums and differences of functions
is not that surprising. The fact that this is also true for products is worth a closer look. The reason that
Theorem 6 is true has to do with a property of more general series we’ll look at in the next section. For
now we quote the the needed fact:

Theorem 7

Suppose the series

f (x) = r0 + r1(x − a) + r2(x − a)2 + r3(x − a)3 + · · · =
∞∑
k=0

rk(x − a)k

converges for every x in an open interval I containing a. Then f is differentiable on I,

f ′(x) = r1 + 2r2(x − a) + 3r3(x − a)2 + 4r4(x − a)3 + · · · =
∞∑
k=1

krk(x − a)k−1

and this series for f ′(x) also converges on I.

This theorem tells us that the Taylor (or Maclaurin) series for the derivative of a function is obtained by
simply differentiating the Taylor (resp. Maclaurin) series of the original function term by term. We can
now prove our main theorem:

Proof of Theorem 6

The proofs of (i), (ii) and (iii) are similar; let’s prove (iii) since it’s the least obvious of
the three. Let Fn(x) and Gn(x) be the Taylor polynomials of degree n at a for f and g ,
respectively. By hypothesis

f (x) = lim
n→∞

Fn(x) for every x in I1

and
g(x) = lim

n→∞
Gn(x) for every x in I2 .
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Since these limits exist and I is contained in both I1 and I2, then for every x in I

f (x)g(x) =
(
lim
n→∞

Fn(x)
)(

lim
n→∞

Gn(x)
)

= lim
n→∞

(Fn(x)Gn(x))

=
∞∑
k=0

pk(x − a)k

where pk =
k∑

j=0

bjck−j are the coefficients resulting from multiplying the series together and

collecting like terms.
So (f g)(x) has a convergent series representation on I; to complete the proof we must show
that this series is indeed a Taylor series. That is, we must show that for each k ,

pk =
1

k!

dk

dxk
[f (x)g(x)]x=a .

Setting x = a in

f (x)g(x) = p0 + p1(x − a) + p2(x − a)2 + p3(x − a)3 + p4(x − a)4 + · · ·

we find
p0 = f (a)g(a) .

Taking k derivatives and setting x = a in

f (x)g(x) = p0 + p1(x − a) + p2(x − a)2 + p3(x − a)3 + p4(x − a)4 + · · ·

gives (by Theorem 7)

dk

dxk
[f (x)g(x)]x=a =

dk

dxk
[
p0 + p1(x − a) + p2(x − a)2 + p3(x − a)3 + p4(x − a)4 + · · ·

]
x=a

= [ k!pk + (terms with at least one factor of (x − a)) ]x=a

= k!pk

so that
pk =

1

k!

dk

dxk
[f (x)g(x)]x=a ,

which completes the proof. �

Here are some examples illustrating the application of these rules:

Example 4

Find the Maclaurin series for f (x) = x2ex .
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Solution

x2ex = x2
(
1 + x +

x2

2!
+

x3

3!
+ · · ·

)

= x2 + x3 +
x4

2!
+

x5

3!
+ · · ·

=
∞∑
k=0

xk+2

k!

Since the Maclaurin series for x2 and ex both converge on (−∞,∞), the open interval of
convergence for x2ex will again be (−∞,∞) . �

Notice in this example that the final answer was stated using
∑

notation. This is not strictly necessary,
but is good practice in the case where the terms of the sum follow an obvious pattern. You will generally
be told the form to use for expressing your final answer.

Example 5

Find the first four non-zero terms of the Maclaurin series for f (x) = ex cos x .

Solution

Multiply each term from the first series by each term in the second and collect like terms:

ex cos x =

(
1 + x +

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
− · · ·

)

= 1 ·
(
1− x2

2!
+

x4

4!
− · · ·

)
+ x ·

(
1− x2

2!
+

x4

4!
− · · ·

)
+

x2

2!
·
(
1− x2

2!
+

x4

4!
− · · ·

)
+

x3

3!
·
(
1− x2

2!
+

x4

4!
− · · ·

)
+

x4

4!
·
(
1− x2

2!
+

x4

4!
− · · ·

)
+ · · ·

= 1 + x − x3

3
− x4

6
+ · · ·

Again in this example, the Maclaurin series for ex and cos x both converge on (−∞,∞) and
so the open interval of convergence for the product is also (−∞,∞) . �
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Another way to define new functions from old is by function composition. Recall that (f ◦ g)(x) =
f (g(x)). In the case where g(x) = x r for r a non-negative integer we have

Theorem 8

If
f (x) =

∞∑
k=0

bkx
k

is a Maclaurin series for f with open interval of convergence I and r is a non-negative integer
such that x r is in I , then

f (x r ) =
∞∑
k=0

bkx
rk

is the Maclaurin series for f (x r ) .

Example 6

Find the Maclaurin polynomial of degree 6 for f (x) = x

1 + 4x2
.

Solution

Let’s find the Maclaurin series for f and then extract the terms up to degree 6. First rearrange
f (x) to make the choice of series more obvious:

f (x) =
x

1 + 4x2
= x · 1

1− (−4x2)
.

For the fraction 1

1− (−4x2)
we’ll use the geometric series for 1

1− x
with x replaced

with −4x2:

f (x) = x · 1

1− (−4x2)

= x ·
(
1 + (−4x2) + (−4x2)2 + (−4x2)3 + (−4x2)4 + · · ·

)
= x ·

(
1− 4x2 + 16x4 − 64x6 + · · ·

)
= x − 4x3 + 16x5 − 64x7 + · · ·

Extracting the terms of degree 6 or less we have

T6(x) = x − 4x3 + 16x5 .

�
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Taylor and Maclaurin series can be used to calculate limits, and in some cases this approach is far more
efficient than L’Hospital’s Rule as the following example illustrates:

Example 7

Evaluate lim
x→0

e−x
2
+ x2 − 1

x4

Solution

Applying direct substitution yields the indeterminate form “0
0

”. Let’s replace e−x
2 with its

Maclaurin series, which is easily found by replacing x with −x2 in the series for ex :

lim
x→0

e−x
2
+ x2 − 1

x4
= lim

x→0

(
1 + (−x2) + (−x2)2

2!
+

(−x2)3

3!
+ · · ·

)
+ x2 − 1

x4

= lim
x→0

(
1− x2 +

x4

2!
− x6

3!
+ · · ·

)
+ x2 − 1

x4

= lim
x→0

(
x4

2!
− x6

3!
+ · · ·

)
x4

= lim
x→0

x4
(
1

2!
− x2

3!
+ · · ·

)
x4

= lim
x→0

1

2!
− x2

3!
+ · · ·

=
1

2

�

Section 5 Exercises
1. Find the Maclaurin series and state the open

interval of convergence:

(a) f (x) = cos (πx)

(b) f (x) = x arctan x

2. Find the first four non-zero terms of the
Maclaurin series for f (x) = ex ln(1− x) .

3. Use a series to evaluate the following limits:

(a) lim
x→0

1− cos x

1 + x − ex
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(b) lim
x→0

sin x − x +
x3

6
x5

4. Find the Maclaurin polynomial of degree 13
for f (x) = x3 sin (x2) .

5. Find the Maclaurin series for f (x) = x

(1 + x)2

(Hint: d

dx

[
1

1 + x

]
=

−1
(1 + x)2

.)

6. Find the Maclaurin series and state the open
interval of convergence for f (x) = sin2x .
(Hint: using a trigonometric identity to first
rewrite f (x) will make this easier.)

7. Find the Maclaurin series for g(x) =
2 sin x cos x (Hint: use your result from the

previous exercise.)

8. The hyperbolic sine function, sinh x , is de-
fined to be

sinh x =
ex − e−x

2
.

This function arises in the solution to certain
equations in physics and engineering. Find
the Maclaurin series for sinh (x2/3) .

9. We know that d

dx
[ex ] = ex . Prove this by

differentiating the Maclaurin series for ex .

10. Show that the derivative of sin x = cos x us-
ing Maclaurin series.

Answers
1. (a)

∞∑
k=0

(−1)kπ2kx2k

(2k)!
; (−∞,∞)

(b)
∞∑
k=0

(−1)kx2(k+1)

2k + 1
; (−1, 1)

2. −x − 3x2

2
−

4x3

3
− x4 − · · ·

3. (a) −1

(b) 1

120

4. T13(x) = x5 −
x9

6
+

x13

120

5.
∞∑
k=0

(−1)k (k + 1)xk+1

6.
∞∑
k=0

(−1)k22k+1x2(k+1)

(2(k + 1))!
; (−∞,∞)

7.
∞∑
k=0

(−1)k22k+1x2k+1

(2k + 1)!

8.
∞∑
k=0

x2(2k+1)

32k+1(2k + 1)!

6 Power Series

So far we have seen that if a function f has derivatives of all orders at a point x = a then the Taylor (or
Maclaurin) series for the function can be defined, and under suitable conditions, the series converges to
the function on an open interval of convergence I. That is, for x in I,

f (x) =
∞∑
k=0

ak(x − a)k ,

where equality here is understood to mean

f (x) = lim
n→∞

n∑
k=0

ak(x − a)k .
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Now let’s examine this idea from the other direction: suppose we have an infinite sequence of real
numbers a0, a1, a2, . . . and we form the infinite series

∞∑
k=0

ak(x − a)k .

Now let
f (x) =

∞∑
k=0

ak(x − a)k = lim
n→∞

n∑
k=0

ak(x − a)k ,

where the domain of f is the set of real numbers x for which the limit above exists. What can we say
about functions defined in this way? In particular, what is the domain, is the function differentiable, and
if so, what is the derivative?

Definition 5

A series of the form
∞∑
k=0

ak(x − a)k = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + · · ·

is called a power series centred at a or a power series about a . The real numbers
a0, a1, a2, . . . are called the coefficients of the series.

Notice that Taylor and Maclaurin series fall into the general category of power series. Also notice that
f (a) = a0 for every power series f (x) =

∑∞
k=0 ak(x − a)k , so there is at least one point in the domain of

f . To determine the open interval of convergence of the power series, we turn to the following theorem
which is a consequence of a result called the ratio test from the general theory of infinite series:

Theorem 9

Suppose
∑∞

k=0 ak(x − a)k is a power series and let uk(x) be the k th non-zero term of the
series (note that some of the ak may be zero). Then the power series converges if

lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

We illustrate the use of the theorem with two examples.

Example 8

Determine the open interval of convergence of
∞∑
k=0

(−1)kxk+1

k + 1
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Solution

Here uk(x) =
(−1)kxk+1

k + 1
. For convergence we require

lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

lim
k→∞

∣∣∣∣(−1)k+1xk+2

k + 2

∣∣∣∣∣∣∣∣(−1)kxk+1

k + 1

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣xk+2

xk+1

k + 1

k + 2

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣x k + 1

k + 2

∣∣∣∣ < 1

|x | < 1

So the open interval of convergence is −1 < x < 1, i.e. I = (−1, 1) .
You may notice from our work on Taylor series that the power series in this example is the
Taylor series defiining ln (1 + x), and I = (−1, 1) is the result stated in the summary of
Maclaurin series at the end of Section 4. �

Example 9

Determine the open interval of convergence of
∞∑
k=1

(−1)k4k(x − 1)2k

k

Solution

Here
uk(x) =

(−1)k4k(x − 1)2k

k
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For convergence of the series we require

lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

lim
k→∞

∣∣∣∣(−1)k+14k+1(x − 1)2(k+1)

k + 1

∣∣∣∣∣∣∣∣(−1)k4k(x − 1)2k

k

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣4k+1

4k
(x − 1)2k+2

(x − 1)2k
k

k + 1

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣4(x − 1)2
k

k + 1

∣∣∣∣ < 1

4|x − 1|2 < 1

|x − 1|2 < 1

4

so |x − 1| < 1

2

That is, the series converges for 1/2 < x < 3/2 , so the open interval of convergence is
I = (1/2, 3/2) . �

In these two examples, the limit
lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

resulted in a statement of the form |x−a| < R which gave the open interval of convergence (a−R , a+R).
The value R here is called the radius of convergence of the power series. There are three possibilities
for R :

(i) If R = 0, the power series converges only for x = a and the open interval of convergence does not
exist.

(ii) If R > 0, the power series converges for |x − a| < R and diverges for |x − a| > R . That is, the
open interval of convergence of the power series is (a − R , a + R) .

(iii) If R = ∞ the power series converges for all real numbers: the open interval of convergence is
(−∞,∞) .
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The first two examples above show possibility (ii) where R > 0 is a finite number. The next two examples
show the other two possibilities: R = 0 and R =∞:

Example 10 (R = 0)

Determine the radius of convergence and open interval of convergence of
∞∑
k=0

k !(x − 2)k

Solution

Here uk(x) = k!(x − 2)k . We require

lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

lim
k→∞

|(k + 1)!(x − 2)k+1|
|k!(x − 2)k |

< 1

lim
k→∞
|(k + 1)(x − 2)| < 1

which is only possible if x = 2, and so R = 0 . In this case the open interval of convergence
does not exist. �

Example 11 (R = ∞)

Determine the radius of convergence and open interval of convergence of
∞∑
k=0

(−1)kx2k

22k(k !)2

Solution

Here uk =
(−1)kx2k

22k(k!)2
and we require
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lim
k→∞

|uk+1(x)|
|uk(x)|

< 1

lim
k→∞

∣∣∣∣ (−1)k+2x2(k+1)

22(k+1)((k + 1)!)2

∣∣∣∣∣∣∣∣(−1)kx2k22k(k!)2

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣ 22k

22k+2

k!

(k + 1)!

k!

(k + 1)!

x2k+2

x2k

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣14 1

(k + 1)2
x2
∣∣∣∣ < 1

which results in 0 < 1,

and this last statement is true for every real number x . So R =∞ in this case and the open
interval of covergence is the entire real number line, I = (−∞,∞) .
(The function defined by the power series in this example is called a Bessel function of or-
der 0. Bessel functions arise in the solutions of problems involving wave propagation, among
others. ) �

In the case where R > 0 and finite, the power series may also converge for x = a− R or for x = a + R
(that is, at one or both of the boundary points of the open interval of convergence.) The convergence
behaviour at each of these two points must be analyzed separately using other techniques from the
general theory of infinite series. For our purposes, it will suffice to find the radius of convergence and,
in the case of R > 0, the corresponding open interval of convergence.

Derivatives of Power Series

The derivatives of functions defined by power series can be found as one might expect, by differentiating
term by term as one would a polynomial. The details are contained the in the following theorem which
we state without proof:

Theorem 10

Suppose
∞∑
k=0

ak(x − a)k is a power series with radius of convergence R > 0 and corresponding

open interval of convergence I = (a − R , a + R) . Then the function

f (x) =
∞∑
k=0

ak(x − a)k
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is differentiable on I,

f ′(x) = a1 + 2a2(x − a) + 3a3(x − a)2 + 4a4(x − a)3 + · · ·

=
∞∑
k=1

kak(x − a)k−1 ,

and the radius of convergence of the power series defining f ′(x) is again R .

As a consequence of this theorem, if f (x) =
∑∞

k=0 ak(x − a)k on I, then

ak =
f (k)(a)

k!
for k = 0, 1, 2, . . .

In other words, the power series
∑∞

k=0 ak(x−a)k is the Taylor series about a for the function f it defines,
and the open interval of convergence of the Taylor series is I .

Example 12

The first five non-zero terms of the power series representing tan x on I = (−π/2,π/2) are

tan x = x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · .

Use this information to find the Maclaurin series for sec2x . State the open interval of
convergence.

Solution

Since the given series represents tan x on I, it is equal to the Maclaurin series for the
function. Differentiating gives

d

dx
[tan x ] =

d

dx

[
x +

x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · ·

]

sec2x = 1 +
3x2

3
+

10x4

15
+

119x6

315
+

558x8

2835
+ · · ·

= 1 + x2 +
2x4

3
+

17x6

45
+

62x8

315
+ · · ·

The open interval of convergence is the same as that of the original series: I = (−π/2,π/2)
�
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Section 6 Exercises
1. Find the radius of convergence and open in-

terval of convergence:

(a)
∞∑
k=0

(x − 2)k

10k

(b)
∞∑
k=0

(3x − 2)k+1

k + 1
[caution: put the se-

ries in powers of (x − a) first]

(c)
∞∑
k=1

(x − 1)k

k33k

(d)
∞∑
k=1

(−1)k32k(x − 2)k

3k

(e)
∞∑
k=0

k!(x − 4)k

(f)
∞∑
k=0

(−1)k(x − 1)4k

k!

(g)
∞∑
k=0

(−1)k(x − 3)2k

9k

(h)
∞∑
k=1

kkxk

k!

2. Find the radius of convergence and open in-
terval of convergence of

∞∑
k=0

xk

ek
.

What function does this series represent?

3. Use the result in Example 12 to find f (8)(0)
for f (x) = tan2x . (Hint: use the identity
1 + tan2x = sec2x .)

Answers
1. (a) R = 10; I = (−8, 12)

(b) R = 1/3; I = (1/3, 1)

(c) R = 3; I = (−2, 4)

(d) R = 1/9; I = (17/9, 19/9)

(e) R = 0; I does not exist (series converges only for
x = 4)

(f) R =∞; I = (−∞,∞)

(g) R = 3; I = (0, 6)

(h) R = 1/e; I = (−1/e, 1/e)

2. R = e; I = (−e, e); f (x) = e/(e − x)

3. 7936
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