Method of Undetermined Coefficients

Use to solve

$$L(y) = g(x)$$

where

$$L = a_n D^n + a_{n-1} D^{n-1} + \cdots + a_1 D + a_0$$
.

First, determine the complementary function y_c which is the general solution to

$$L(y)=0$$
.

Next, guess a particular solution y_p based on the form of g(x). Consider y_p as a sum of trial functions determined as follows:

If $g(x)$ contains a term which is a constant multiple of	trial function to appear as a term of y_p^*
k (a constant)	A
x ^m	$c_m x^m + c_{m-1} x^{m-1} + \cdots + c_1 x + c_0$
e ^{cx}	Ae ^{cx}
$\sin(px+q)$	$A\sin(px+q)+B\cos(px+q)$
$\cos(px+q)$	$A\sin(px+q)+B\cos(px+q)$
$x^m e^{cx}$	$(c_m x^m + c_{m-1} x^{m-1} + \cdots + c_1 x + c_0)e^{cx}$
$x^m \sin(px+q)$	$ \begin{vmatrix} (c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) \sin(px + q) \\ + (d_m x^m + d_{m-1} x^{m-1} + \dots + d_1 x + d_0) \cos(px + q) \end{vmatrix} $
$x^m \cos(px+q)$	$\begin{vmatrix} (c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) \sin(px + q) \\ + (d_m x^m + d_{m-1} x^{m-1} + \dots + d_1 x + d_0) \cos(px + q) \end{vmatrix}$
$e^{cx}x^m\sin(px+q)$	$e^{cx}(c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) \sin(px + q) + e^{cx}(d_m x^m + d_{m-1} x^{m-1} + \dots + d_1 x + d_0) \cos(px + q)$
$e^{cx}x^m\cos(px+q)$	$e^{cx}(c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) \sin(px + q) + e^{cx}(d_m x^m + d_{m-1} x^{m-1} + \dots + d_1 x + d_0) \cos(px + q)$

^{*} If a constant multiple of a term of the trial function is already a term of the complementary solution y_c , multiply that trial function by x^j where j is the smallest natural number such that the new trial function no longer duplicates a term of y_c .