- 2. Given that $y_1(t) = t$ is a solution to $y'' y'/t + y/t^2 = 0$ for t > 0, find a second linearly independent solution $y_2(t)$ and state the general solution.
- 3. The differential equation $(\sin(t))y'' 2(\cos(t))y' (\sin(t))y = 0$ has a solutions of either $y = \sin(t)$ or $y = \cos(t)$ on the interval $(0, \pi)$. Figure out which, find a second linearly independent solution, and state the general solution. (In your simplifications it may help to recall that $1 + \cot^2(\theta) = \csc^2(\theta)$.)
- 4. Solve the initial value problem:

$$y'' - 6y' + 9y = 0$$
, $y(0) = 2$, $y'(0) = \frac{25}{3}$

5. Find the general solution of

$$y''' - 7y'' + 7y' + 15y = 0$$

6. Find the general solution of

$$y'' + 10y' + 41y = 0$$

7. Solve the initial value problem:

$$y''' - 4y'' + 7y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$

8. Find the general solution of

$$y''-5y'+6y=xe^x$$

9. Solve the initial value problem:

$$y'' + y' - 12y = e^t + e^{2t} - 1$$
, $y(0) = 1$, $y'(0) = 3$