Real Vector Spaces: Overview

Consider $R^{3}=\left\{\left(v_{1}, v_{2}, v_{3}\right) \mid v_{i} \in \mathbb{R}\right\}$.

- We saw that R^{3} consists of all linear combinations

$$
a \hat{\mathbf{\imath}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}}
$$

where a, b and c are scalars.

- R^{3} is an example of a vector space over \mathbb{R}. We say that R^{3} is spanned by $\{\hat{\mathbf{\imath}}, \hat{\mathbf{\jmath}}, \hat{\mathbf{k}}\}$.
- For any non-zero vector \mathbf{u} we saw that

$$
W_{1}=\{a \mathbf{u} \mid a \in \mathbb{R}\}
$$

is a line through $\mathbf{0}$. Sums and scalar multiples of vectors in W_{1} are again in the line W_{1}.

- For any non-zero vectors \mathbf{u} and \mathbf{w} we saw that

$$
W_{2}=\{a \mathbf{u}+b \mathbf{w} \mid a, b \in \mathbb{R}\}
$$

is a plane through $\mathbf{0}$. Sums and scalar multiples of vectors in W_{2} are again in the plane W_{2}.

- W_{1} and W_{2} are called subspaces of R^{3}.

These ideas are useful for studying other mathematical objects which can can also be viewed as vectors.

Definition of a Vector Space

Let V be a nonempty set of objects (called vectors) on which two operations are defined: addition and scalar multiplication.

Addition assigns to each pair of vectors \mathbf{u} and \mathbf{v} a vector denoted $\mathbf{u}+\mathbf{v}$.

Scalar multiplication assigns to each scalar k and vector \mathbf{u} a vector denoted $k \mathbf{u}$.
If for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and scalars k and m the following axioms (basic assumptions) are satisfied then we say that V is a vector space:

1. $\mathbf{u}+\mathbf{v}$ is in V. (Say that V is closed under addition.)
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is an object $\mathbf{0}$ in V called the zero object such that $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}$ for every u in V.
5. For each \mathbf{u} in V there is $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}$.
6. $k \mathbf{u}$ is in V for all scalars k. (Say that V is closed under scalar multiplication.)
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1 \mathbf{u}=\mathbf{u}$

For us the set of scalars will be the real numbers, in which case V is called a real vector space.

Examples of Vector Spaces

1. R^{n} with the usual addition and scalar multiplication of vectors.
2. $R^{\infty}=$ the set of all infinite sequences of real numbers $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, \ldots\right)$ with addition and scalar multiplication defined component-wise.
3. $M_{m n}=$ the set of all $m \times n$ matrices with matrix addition and scalar multiplication.
4. $F(-\infty, \infty)=$ the set of all real valued functions with domain $(-\infty, \infty)$:

Suppose f, g are functions with domain $(-\infty, \infty)$ and a, b are real scalars. Then $a f+b g$ defined by

$$
(a f+b g)(x)=a f(x)+b g(x)
$$

again has domain $(-\infty, \infty)$.
Here the vectors are functions.
5. $C(-\infty, \infty)=$ the set of all real valued continuous functions with domain $(-\infty, \infty)$.

This time if f, g are continuous functions with domain $(-\infty, \infty)$ and a, b are real scalars, then $a f+b g$ is again continuous with domain $(-\infty, \infty)$.
6. $C^{m}(-\infty, \infty)=$ the set of all real valued functions whose first m derivatives exist and are continuous on $(-\infty, \infty)$.
7. $P_{n}=$ the set of all polynomials of degree less than or equal to n :

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers.

