Real Vector Spaces: Overview

Consider $R^3 = \{(v_1, v_2, v_3) \mid v_i \in \mathbb{R}\}$.

• We saw that R^3 consists of all **linear combinations**

$$a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

where a, b and c are scalars.

- R^3 is an example of a **vector space** over \mathbb{R} . We say that R^3 is **spanned** by $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\}$.
- For any non-zero vector **u** we saw that

$$W_1 = \{a \mathbf{u} \mid a \in \mathbb{R}\}$$

is a line through $\mathbf{0}$. Sums and scalar multiples of vectors in W_1 are again in the line W_1 .

ullet For any non-zero vectors ${f u}$ and ${f w}$ we saw that

$$W_2 = \{a \mathbf{u} + b \mathbf{w} \mid a, b \in \mathbb{R}\}$$

is a plane through ${\bf 0}$. Sums and scalar multiples of vectors in W_2 are again in the plane W_2 .

ullet W_1 and W_2 are called **subspaces** of R^3 .

These ideas are useful for studying other mathematical objects which can can also be viewed as vectors.

Definition of a Vector Space

Let V be a nonempty set of objects (called vectors) on which two operations are defined: addition and scalar multiplication.

Addition assigns to each pair of vectors \mathbf{u} and \mathbf{v} a vector denoted $\mathbf{u} + \mathbf{v}$.

Scalar multiplication assigns to each scalar k and vector \mathbf{u} a vector denoted $k\mathbf{u}$.

If for all vectors \mathbf{u} , \mathbf{v} , \mathbf{w} and scalars k and m the following **axioms** (basic assumptions) are satisfied then we say that V is a **vector space**:

- 1. $\mathbf{u} + \mathbf{v}$ is in V. (Say that V is **closed** under addition.)
- 2. u + v = v + u
- 3. (u + v) + w = u + (v + w)
- 4. There is an object $\mathbf{0}$ in V called the zero object such that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0}$ for every u in V.
- 5. For each \mathbf{u} in V there is $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.
- 6. $k\mathbf{u}$ is in V for all scalars k. (Say that V is **closed** under scalar multiplication.)
- 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- 8. $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- 9. $k(m\mathbf{u}) = (km)\mathbf{u}$
- 10. 1u = u

For us the set of scalars will be the real numbers, in which case V is called a real vector space.

Examples of Vector Spaces

- 1. R^n with the usual addition and scalar multiplication of vectors.
- 2. R^{∞} = the set of all infinite sequences of real numbers $\mathbf{u} = (u_1, u_2, u_3, ...)$ with addition and scalar multiplication defined component-wise.
- 3. M_{mn} = the set of all $m \times n$ matrices with matrix addition and scalar multiplication.
- 4. $F(-\infty, \infty)$ = the set of all real valued functions with domain $(-\infty, \infty)$:

Suppose f, g are functions with domain $(-\infty, \infty)$ and a, b are real scalars. Then af + bg defined by

$$(af + bg)(x) = af(x) + bg(x)$$

again has domain $(-\infty, \infty)$.

Here the vectors are functions.

5. $C(-\infty, \infty)$ = the set of all real valued continuous functions with domain $(-\infty, \infty)$.

This time if f, g are continuous functions with domain $(-\infty, \infty)$ and a, b are real scalars, then af + bg is again continuous with domain $(-\infty, \infty)$.

- 6. $C^m(-\infty, \infty)$ = the set of all real valued functions whose first m derivatives exist and are continuous on $(-\infty, \infty)$.
- 7. P_n = the set of all polynomials of degree less than or equal to n:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

where $a_0, a_1, a_2, \dots, a_n$ are real numbers.