Question 1: Use the Wronskian to determine if $S = \{x, e^{-x}, xe^x\}$ is a linearly independent set on $(-\infty, \infty)$.

Question 2: Determine whether $S = \{(1,0,0,0), (1,1,1,1), (1,0,1,0), (0,1,0,1)\}$ is a basis for \mathbb{R}^4 .

[5]

[5]

Question 3: Let $\mathbf{p}_1 = 1 + x$, $\mathbf{p}_2 = 1 + x^2$ and $\mathbf{p}_3 = x + x^2$. If $\mathbf{p} = 2 - x + x^2$ and $S = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a basis, find $(\mathbf{p})_S$. (Recall, $(\mathbf{p})_S$ is the coordinate vector for \mathbf{p} relative to the basis S.)

[5]

Question 4: Find a basis and state the dimension of the row space of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & -2 \\ 4 & 3 & -1 \\ 6 & 5 & 1 \end{bmatrix}$$

Question 5: Find a basis and state the dimension for the subspace of \mathbb{R}^4 consisting of all vectors (a, b, c, d) where b = a + c and d = -2a + 3c.

[5]

Question 6: Find a basis for the subspace of R^3 spanned by $\mathbf{v}_1 = (1, -1, 3)$, $\mathbf{v}_2 = (5, -4, -4)$ and $\mathbf{v}_3 = (7, -6, 2)$.

[5]

(a) Give a basis and state the dimension of the row space of ${f A}$.

[2]

(b) Give a basis and state the dimension of the column space of ${\bf A}$.

[2]

(c) Give a basis and state the dimension of the null space of $\bf A$. (Equivalently, give a basis and state the dimension of the solution space of $\bf Ax=0$.)

[3]

(d) Determine $rank(\mathbf{A})$ and $nullity(\mathbf{A})$.

[1]

(e) Determine $rank(\mathbf{A}^T)$ and $nullity(\mathbf{A}^T)$.

[1]

Math 141 - Test 4 Apr 13 2015

Question 8: Let the transformation T_1 represent projection onto the xy -plane and T_2 be the transformation which rotates a vector in \mathbb{R}^3 counter-clockwise about the y -axis by an angle θ .
(a) Determine the standard matrix ${f A}$ for the transformation ${\cal T}_1$.

(b) Determine the standard matrix ${\bf B}$ for the transformation ${\it T}_2$.

[3]

[2]

(c) Determine the image of the line segment joining (2,1,1) and (1,3,-1) if it is first rotated counterclockwise about the y-axis by $\pi/3$ (or 60°) and then projected onto the xy-plane.

[3]

(d) Is applying the projection followed by the rotation the same as applying the rotation followed by the projection? Explain using matrices.

[2]