Question 1: Use the Wronskian to determine if $S = \{x, e^{-x}, xe^x\}$ is a linearly independent set on $(-\infty, \infty)$.

[5]

Question 2: Determine whether $S = \{(1, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)\}$ is a basis for \mathbb{R}^4 .

Question 3: Let $\mathbf{p}_1 = 1 + x$, $\mathbf{p}_2 = 1 + x^2$ and $\mathbf{p}_3 = x + x^2$. If $\mathbf{p} = 2 - x + x^2$ and $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ is a basis, find (**p**)_S. (Recall, (**p**)_S is the coordinate vector for **p** relative to the basis S.)

[5]

Question 4: Find a basis and state the dimension of the row space of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & -2 \\ 4 & 3 & -1 \\ 6 & 5 & 1 \end{bmatrix}$$

Question 5: Find a basis for the subspace of \mathbb{R}^3 consisting of all vectors (a, b, c) where b = a + c.

[5]

Question 6: Find a basis for the subspace of R^3 spanned by $v_1 = (1, -1, 3)$, $v_2 = (5, -4, -4)$ and $v_3 = (7, -6, 2)$.

	1	3	1	3		1	3	1	3	
	0	1	1	0	has REF R =	0	1	1	0	
Question 7: The ma	trix $\mathbf{A} = \begin{vmatrix} -3 \end{vmatrix}$	0	6	-1		0	0	0	1	
	3	4	-2	1		0	0	0	0	
	2	0	-4	-2		0	0	0	0	

(a) Give a basis and state the dimension of the row space of ${\boldsymbol{\mathsf{A}}}$.

(b) Give a basis and state the dimension of the column space of $\boldsymbol{\mathsf{A}}$.

[2]

[2]

(c) Give a basis and state the dimension of the null space of ${\bf A}$. (Equivalently, give a basis and state the dimension of the solution space of ${\bf Ax}={\bf 0}$.)

(d) Determine $rank(\mathbf{A})$ and $nullity(\mathbf{A})$.

(e) Determine rank(\mathbf{A}^{T}) and nullity(\mathbf{A}^{T}).

[1]

[3]

[1]

Question 8: Let the transformation T_1 represent projection onto the *xy*-plane and T_2 be the transformation which rotates a vector in R^3 counter-clockwise about the *y*-axis by an angle θ .

(a) Determine the standard matrix $\boldsymbol{\mathsf{A}}$ for the transformation \mathcal{T}_1 .

(b) Determine the standard matrix ${f B}$ for the transformation ${\cal T}_2$.

[3]

[3]

(c) Determine the image of the line segment joining (2, 1, 1) and (1, 3, -1) if it is first rotated counterclockwise about the y-axis by $\pi/6$ (or 30°) and then projected onto the xy-plane.