Question 1: Use the Wronskian to determine if $S=\left\{x, e^{-x}, x e^{x}\right\}$ is a linearly independent set on $(-\infty, \infty)$.

Question 2: Determine whether $S=\{(1,0,0,0),(1,1,1,1),(1,0,1,0),(0,1,0,1)\}$ is a basis for \mathbb{R}^{4}.

Question 3: Let $\mathbf{p}_{1}=1+x, \mathbf{p}_{2}=1+x^{2}$ and $\mathbf{p}_{3}=x+x^{2}$. If $\mathbf{p}=2-x+x^{2}$ and $S=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a basis, find $(\mathbf{p})_{S}$. (Recall, $(\mathbf{p})_{S}$ is the coordinate vector for \mathbf{p} relative to the basis S.)

Question 4: Find a basis and state the dimension of the row space of

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & 2 & -2 \\
4 & 3 & -1 \\
6 & 5 & 1
\end{array}\right]
$$

Question 5: Find a basis for the subspace of \mathbb{R}^{3} consisting of all vectors (a, b, c) where $b=a+c$.

Question 6: Find a basis for the subspace of R^{3} spanned by $\mathbf{v}_{1}=(1,-1,3), \mathbf{v}_{2}=(5,-4,-4)$ and $\mathbf{v}_{3}=(7,-6,2)$.

Question 7: The matrix $\mathbf{A}=\left[\begin{array}{rrrr}1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ -3 & 0 & 6 & -1 \\ 3 & 4 & -2 & 1 \\ 2 & 0 & -4 & -2\end{array}\right]$ has REF $\mathbf{R}=\left[\begin{array}{llll}1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(a) Give a basis and state the dimension of the row space of \mathbf{A}.
(b) Give a basis and state the dimension of the column space of \mathbf{A}
(c) Give a basis and state the dimension of the null space of \mathbf{A}. (Equivalently, give a basis and state the dimension of the solution space of $\mathbf{A x}=\mathbf{0}$.)
(d) Determine $\operatorname{rank}(\mathbf{A})$ and nullity (\mathbf{A}).
(e) Determine $\operatorname{rank}\left(\mathbf{A}^{T}\right)$ and $\operatorname{nullity}\left(\mathbf{A}^{T}\right)$.

Question 8: Let the transformation T_{1} represent projection onto the $x y$-plane and T_{2} be the transformation which rotates a vector in R^{3} counter-clockwise about the y-axis by an angle θ.
(a) Determine the standard matrix \mathbf{A} for the transformation T_{1}.
(b) Determine the standard matrix \mathbf{B} for the transformation T_{2}.
(c) Determine the image of the line segment joining $(2,1,1)$ and $(1,3,-1)$ if it is first rotated counterclockwise about the y-axis by $\pi / 6$ (or 30°) and then projected onto the $x y$-plane.

