Question 1: Let $\mathbf{A}=\left[\begin{array}{rrr}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right]$.
(a) Determine \mathbf{A}^{-1} or show that it does not exist. Use any method you wish.
(b) Based on your result from part (a), how many solutions $\left(x_{1}, x_{2}, x_{3}\right)$ does the system

$$
\mathbf{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

have? Explain.

Question 2: Determine \mathbf{A} if $\left(3 \mathbf{I}-2 \mathbf{A}^{\boldsymbol{\top}}\right)^{-1}=\left[\begin{array}{ll}-1 & 2 \\ -3 & 5\end{array}\right]$.

Question 3: Let $\mathbf{B}=\left[\begin{array}{rrr}8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1\end{array}\right]$ and $\mathbf{F}=\left[\begin{array}{lll}8 & 1 & 5 \\ 8 & 1 & 1 \\ 3 & 4 & 1\end{array}\right]$. Find a matrix \mathbf{E} so that $\mathbf{E F}=\mathbf{B}$.

Question 4: Show that

$$
\mathbf{A}=\left[\begin{array}{lllll}
0 & a & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 \\
0 & d & 0 & e & 0 \\
0 & 0 & f & 0 & g \\
0 & 0 & 0 & h & 0
\end{array}\right]
$$

is not invertible for any values of a, b, c, d, e, f, g, h.

Question 5: How many 2×2 diagonal matrices satisfy $\mathbf{A}^{2}-3 \mathbf{A}-4 \mathbf{I}=\mathbf{0}$?

Question 6: Compute
$\left|\begin{array}{rrrr}2 & 0 & 1 & 3 \\ 1 & 1 & 3 & 2 \\ 1 & 0 & -1 & 2 \\ 3 & -1 & 2 & 4\end{array}\right|$

Question 7: Find the deteminant of the $n \times n$ matrix

$$
\left[\begin{array}{rrrrr}
(1-n) & 1 & 1 & \cdots & 1 \\
1 & (1-n) & 1 & \cdots & 1 \\
1 & 1 & (1-n) & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & (1-n)
\end{array}\right]
$$

Question 8: Compute \mathbf{A}^{-1} where $\mathbf{A}=\left[\begin{array}{rrr}2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6\end{array}\right]$. (Using adjoints here is likely easier.)

Question 9: If \mathbf{A} and \mathbf{B} are both 3×3 with $\operatorname{det}(\mathbf{A})=4$ and $\operatorname{det}(\mathbf{B})=-3$, determine the value of $\operatorname{det}\left[(2 \mathbf{A})^{-1}(5 \mathbf{B})^{\boldsymbol{T}}\right]$.

Question 10: Use Cramer's rule to solve for z :

$$
\begin{array}{r}
4 x+y+z=3 \\
3 x+7 y-z=0 \\
7 x+3 y-5 z=0 \\
x+z+2 w=1
\end{array}
$$

Question 11: Let $\mathbf{A}=\left[\begin{array}{lll}1 & (k-1) & 7 \\ 2 & (k-3) & 4 \\ 5 & (k+1) & 0\end{array}\right]$. Find all value of k for which \mathbf{A} is invertible.

