Question 1: Let $\mathbf{A} = \begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{bmatrix}$.

(a) Determine \mathbf{A}^{-1} or show that it does not exist. Use any method you wish.

(b) Based on your result from part (a), how many solutions (x_1, x_2, x_3) does the system

$$\mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

have? Explain.

[3]

Question 2: Determine **A** if $(3\mathbf{I} - 2\mathbf{A}^{\mathsf{T}})^{-1} = \begin{bmatrix} -1 & 2 \\ -3 & 5 \end{bmatrix}$.

[3]

[3]

Question 3: Let $\mathbf{B} = \begin{bmatrix} 8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1 \end{bmatrix}$ and $\mathbf{F} = \begin{bmatrix} 8 & 1 & 5 \\ 8 & 1 & 1 \\ 3 & 4 & 1 \end{bmatrix}$. Find a matrix \mathbf{E} so that $\mathbf{EF} = \mathbf{B}$.

Question 4: Show that

$$\mathbf{A} = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix}$$

is not invertible for any values of a, b, c, d, e, f, g, h.

[3]

Question 5: How many 2 × 2 diagonal matrices satisfy $\mathbf{A}^2 - 3\mathbf{A} - 4\mathbf{I} = \mathbf{0}$?

Question 6: Compute

$$\begin{vmatrix} 2 & 0 & 1 & 3 \\ 1 & 1 & 3 & 2 \\ 1 & 0 & -1 & 2 \\ 3 & -1 & 2 & 4 \end{vmatrix}$$

[7]

Question 8: Compute \mathbf{A}^{-1} where $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{bmatrix}$. (Using adjoints here is likely easier.)

Question 9: If A and B are both 3×3 with det (A) = 4 and det (B) = -3, determine the value of det $[(2A)^{-1}(5B)^T]$.

Question 10: Use Cramer's rule to solve for *z*:

$$4x + y + z = 3$$
$$3x + 7y - z = 0$$
$$7x + 3y - 5z = 0$$
$$x + z + 2w = 1$$

[6]

Question 11: Let $\mathbf{A} = \begin{bmatrix} 1 & (k-1) & 7 \\ 2 & (k-3) & 4 \\ 5 & (k+1) & 0 \end{bmatrix}$. Find all value of k for which \mathbf{A} is invertible.