In the following A, B and C are matrices while a, b and c are scalars. The sizes of matrices are such that each of the expressions is defined.

Basic Properties

1.
$$A + B = B + A$$

- 2. A + (B + C) = (A + B) + C
- 3. A(BC) = (AB)C

$$4. \ A(B+C) = AB + AC$$

5.
$$(B+C)A = BA + CA$$

- 6. A(B-C) = AB AC
- 7. (B-C)A = BA CA
- 8. a(B+C) = aB + aC
- 9. a(B-C) = aB aC
- 10. (a+b)C = aC + bC
- 11. (a b)C = aC bC

12.
$$a(bC) = (ab)C$$

13. a(BC) = (aB)C = B(aC)

Zero Matrices

Definition: The **zero matrix** of size $m \times n$ is the matrix with each entry 0, denoted $\mathcal{O}_{m \times n}$. The size is omitted when the context is clear.

Properties:

- 1. A + 0 = 0 + A = A
- 2. A 0 = A
- 3. A A = 0
- 4. 0A = 0
- 5. If cA = 0 then c = 0 or A = 0

Identity Matrices

Definition: The **identity matrix** of order *n* is the **square** matrix with main diagonal entries of 1 and zeros elsewhere, denoted I_n . The size is omitted when the context is clear.

Example:

$$I_4 = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Properties: Here assume A is $m \times n$:

- 1. $AI_n = A$
- 2. $I_m A = A$

Inverse of a Matrix

Definition: If A and B are $n \times n$ with the property that AB = BA = I, then B is called the **inverse** of A, written $B = A^{-1}$. That is,

 $AA^{-1} = I$ and $A^{-1}A = I$

For a given square matrix A, if A^{-1} exists A is said to be **invertible** or **nonsingular**. If not invertible, A is said to be **singular**.