In the following A, B and C are matrices while a, b and c are scalars. The sizes of matrices are such that each of the expressions is defined.

Basic Properties

1. $A+B=B+A$
2. $A+(B+C)=(A+B)+C$
3. $A(B C)=(A B) C$
4. $A(B+C)=A B+A C$
5. $(B+C) A=B A+C A$
6. $A(B-C)=A B-A C$
7. $(B-C) A=B A-C A$
8. $a(B+C)=a B+a C$
9. $a(B-C)=a B-a C$
10. $(a+b) C=a C+b C$
11. $(a-b) C=a C-b C$
12. $a(b C)=(a b) C$
13. $a(B C)=(a B) C=B(a C)$

Zero Matrices

Definition: The zero matrix of size $m \times n$ is the matrix with each entry 0 , denoted $0_{m \times n}$. The size is omitted when the context is clear.

Properties:

1. $A+0=0+A=A$
2. $A-0=A$
3. $A-A=0$
4. $O A=0$
5. If $c A=0$ then $c=0$ or $A=0$

Identity Matrices

Definition: The identity matrix of order n is the square matrix with main diagonal entries of 1 and zeros elsewhere, denoted I_{n}. The size is omitted when the context is clear.

Example:

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Properties: Here assume A is $m \times n$:

1. $A I_{n}=A$
2. $I_{m} A=A$

Inverse of a Matrix

Definition: If A and B are $n \times n$ with the property that $A B=B A=l$, then B is called the inverse of A, written $B=A^{-1}$. That is,

$$
A A^{-1}=I \text { and } A^{-1} A=I
$$

For a given square matrix A, if A^{-1} exists A is said to be invertible or nonsingular. If not invertible, A is said to be singular.

