Math 141 - Matrix Algebra for Engineers

G.Pugh

Jan 142015

Matrices and Matrix Operations

Matrices

- Matrices arise in other areas of mathematics and need not simply represent systems of linear equations.
- Matrices can encode the movement of points on a computer display, the interaction between resources and products in an economy, the probabilities associated with the state of a system at different points in time, etc. Let's examine the algebraic properties of matrices viewed purely as mathematical object.
- Important: in the following discussion, the matrices are not necessarily associated with systems of linear equations. They should be interpreted simply as rectangular arrays of real numbers.

Matrices

- Definition: A rectangular array of numbers consisting of m horizontal rows and n vertical columns

$$
A=\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is called an $m \times n$ matrix (or matrix of size or dimension $m \times n$). For entry $a_{i j}, i$ is the row subscript, while j is the column subscript.

- A general matrix is sometimes denoted $\left[a_{i j}\right]_{m \times n}$
- When referencing the size of a matrix or entries within the matrix, it's always row first, column second

Matrix Examples

- Let $B=\left[\begin{array}{rrr}1 & 6 / 7 & 4 \\ 1 / 2 & -7 & 3\end{array}\right]$.
- The size of B is 2×3.
- A couple of entries of B are $b_{23}=3, \quad b_{21}=1 / 2$.
- Notice: upper case letter to represent matrix, corresponding lowercase letter for entries.

Row and Column Vectors

- Let $\mathbf{p}=\left[\begin{array}{lll}3 & -4 & \pi\end{array}\right]$.
- \mathbf{p} is called a row matrix or row vector. Here $p_{1}=3$, $p_{2}=-4$ and $p_{3}=\pi$.
- Let $\mathbf{q}=\left[\begin{array}{l}0 \\ 2 \\ e\end{array}\right]$.
- q is called a column matrix or column vector. Here $q_{1}=0, q_{2}=2$ and $q_{3}=e$.
- Notice: bold-face lower case letters used to represent vectors. For writing by hand, use \vec{p}, \vec{q}.

Example

Example: Construct $\left[a_{i j}\right]_{4 \times 3}$ if $a_{i j}=\frac{1}{i+j}$.
Solution: Let $A=\left[a_{i j}\right]_{4 \times 3}$. The entries of A are functions of their row and column positions; that is, $a_{i j}=1 /(i+j)$ is a function of the two variables $i=1,2,3,4$ and $j=1,2,3$:

$$
a_{11}=\frac{1}{1+1}=\frac{1}{2}, a_{12}=\frac{1}{1+2}=\frac{1}{3}, a_{13}=\frac{1}{1+3}=\frac{1}{4},
$$

and so on. Computing all of the entries in this way we have

$$
A=\left[\begin{array}{ccc}
\frac{1}{1+1} & \frac{1}{1+2} & \frac{1}{1+3} \\
\frac{1}{2+1} & \frac{1}{2+2} & \frac{1}{2+3} \\
\frac{1}{3+1} & \frac{1}{3+2} & \frac{1}{3+3} \\
\frac{1}{4+1} & \frac{1}{4+2} & \frac{1}{4+3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right]
$$

Square Matrices

- A matrix with the same number n of rows and columns is called a square matrix of order n.
- Example,

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 3 & 1 \\
5 & -7 & -3
\end{array}\right]
$$

- Here the entries $a_{11}=1, a_{22}=3$, and $a_{33}=-3$ (reading from upper-left to lower-right) form the main diagonal of A.

Equality of Matrices

- The matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are said to be equal if A and B have the same size and $a_{i j}=b_{i j}$ for each i and j.
- Example: $\left[\begin{array}{ll}2 & 3 \\ 8 & 7\end{array}\right]=\left[\begin{array}{rr}1+1 & 3 \\ 16 / 2 & 9-2\end{array}\right]$
- Example: $\left[\begin{array}{l}2 \\ 2\end{array}\right] \neq\left[\begin{array}{ll}2 & 2\end{array}\right]$ since the sizes of are not the same: $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ is size 2×1 while $\left[\begin{array}{ll}2 & 2\end{array}\right]$ is size 1×2.

Matrix Addition

- Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then

$$
A+B=\left[a_{i j}+b_{i j}\right]_{m \times n} .
$$

- That is, provided A and B are the same size, the matrix $C=A+B$ is simply the $m \times n$ matrix formed by adding the corresponding entries of A and $B: c_{i j}=a_{i j}+b_{i j}$.
- Example: Let

$$
A=\left[\begin{array}{rrr}
3 & 0 & -2 \\
4 & 3 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-11 & 1 & 12 \\
7 & -2 & 13
\end{array}\right]
$$

Then
$A+B=\left[\begin{array}{rrr}3+(-11) & 0+1 & (-2)+12 \\ 4+7 & 3+(-2) & 1+13\end{array}\right]=\left[\begin{array}{rrr}-8 & 1 & 10 \\ 11 & 1 & 14\end{array}\right]$

Matrix Subtraction

- If A and B are the same size, the matrix $C=A-B$ is the $m \times n$ matrix formed by subtracting the entries of B from the corresponding entries of $A: c_{i j}=a_{i j}-b_{i j}$.
- Example: Let

$$
A=\left[\begin{array}{rrr}
3 & 0 & -2 \\
4 & 3 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-11 & 1 & 12 \\
7 & -2 & 13
\end{array}\right]
$$

Then

$$
A-B=\left[\begin{array}{rrr}
3-(-11) & 0-1 & (-2)-12 \\
4-7 & 3-(-2) & 1-13
\end{array}\right]=\left[\begin{array}{rrr}
14 & -1 & -14 \\
-3 & 5 & -12
\end{array}\right]
$$

Scalar Multiplication

- Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix and let k be a real number (a scalar). Then $C=k A$ is the matrix with entry $c_{i j}=k a_{i j}$.
- Example: For

$$
A=\left[\begin{array}{ll}
1 & 6 \\
4 & 2
\end{array}\right]
$$

multiplication by the scalar 1/2 gives

$$
\frac{1}{2} A=\frac{1}{2}\left[\begin{array}{ll}
1 & 6 \\
4 & 2
\end{array}\right]=\left[\begin{array}{ll}
(1 / 2)(1) & (1 / 2)(6) \\
(1 / 2)(4) & (1 / 2)(2)
\end{array}\right]=\left[\begin{array}{ll}
1 / 2 & 3 \\
2 & 1
\end{array}\right]
$$

Matrix Multiplication

- Definition: Let $A=\left[a_{i j}\right]_{m \times p}$ and $B=\left[b_{i j}\right]_{p \times n}$. Then we define the product $C=A B$ as the matrix with entries

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\cdots+a_{i p} b_{p j}
$$

- Notice:
(i) $a_{i 1}, a_{i 2}, a_{i 3}, \ldots, a_{i p}$ are the elements of row i of A, while $b_{1 j}, b_{2 j}, b_{3 j}, \ldots, b_{p j}$ are the elements of column j of B.
(ii) For matrix multiplication to be defined, the number of columns of A must be the same as the number of rows of B.

Matrix Multiplication Example

Let

$$
A=\left[\begin{array}{rr}
2 & 3 \\
1 & -2 \\
6 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
3 & 7 \\
-2 & 5
\end{array}\right]
$$

Then

$$
\begin{aligned}
A B & =\left[\begin{array}{rr}
(2)(3)+(3)(-2) & (2)(7)+(3)(5) \\
(1)(3)+(-2)(-2) & (1)(7)+(-2)(5) \\
(6)(3)+(4)(-2) & (6)(7)+(4)(5)
\end{array}\right] \\
& =\left[\begin{array}{rr}
0 & 29 \\
-1 & -3 \\
10 & 62
\end{array}\right] .
\end{aligned}
$$

Notice A is size $3 \times 2, B$ is size 2×2, and the product $A B$ is size 3×2.

Matrix Multiplication: Another way to think about it

- Multiplying matrices can be described in terms of a certain type of product: Let \mathbf{r} and \mathbf{c} be the row and column matrices

$$
\mathbf{r}=\left[\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{p}
\end{array}\right] \text { and } \mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right]
$$

- The expression $r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{p} c_{p}$ is called the dot product of \mathbf{r} and \mathbf{c}.
- The matrix product $D=A B$ is the matrix which has entries
$d_{i j}=\operatorname{dot}$ product of row i of A and column j of B.

Matrix Multiplication: Yet another way to think about it

- For the matrix product $A B$, partition B into column vectors:

$$
B=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right]
$$

- Then

$$
A B=A\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{n}
\end{array}\right]
$$

Matrix Multiplication: Yet another way to think about it

- Similarly, partition A into row vectors:

$$
A=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{m}
\end{array}\right]
$$

- Then

$$
A B=\left[\begin{array}{r}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{m}
\end{array}\right] B=\left[\begin{array}{r}
\mathbf{a}_{1} B \\
\mathbf{a}_{2} B \\
\vdots \\
\mathbf{a}_{m} B
\end{array}\right]
$$

Transpose of a Matrix

- Suppose A is an $m \times n$ matrix. The transpose of A, denoted A^{\top}, is the matrix of size $n \times m$ obtained by interchanging the rows and columns of A.
- Example: For

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 3 & 1 \\
5 & -7 & -3
\end{array}\right], \\
& A^{\top}=\left[\begin{array}{rrr}
1 & -2 & 5 \\
-2 & 3 & -7 \\
1 & 1 & -3
\end{array}\right] .
\end{aligned}
$$

Matrix Transpose Example

- Let

$$
\left.B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad\right\} \text { size } 2 \times 3
$$

then

$$
\left.B^{\top}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad\right\} \operatorname{size} 3 \times 2
$$

- Using this last example, notice that

$$
\left(B^{\top}\right)^{\top}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=B
$$

- This turns out to be true in general: for any matrix A, $\left(A^{\top}\right)^{\top}=A$.

Trace of a Matrix

- If A is a square matrix, the trace of A, written $\operatorname{tr}(A)$ is the sum of the entries on the main diagonal of A.
- Example: For

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 3 & 1 \\
5 & -7 & -3
\end{array}\right]
$$

$$
\operatorname{tr}(A)=1+3+(-3)=1
$$

Systems of Linear Equations as Matrix Products

- Matrix multiplication can be used to express systems of linear equations.
- For example, the system

$$
\begin{aligned}
5 x-2 y+z & =-2 \\
-x+11 y-13 z & =6 \\
x+y+z & =1
\end{aligned}
$$

is equivalent to

$$
\left[\begin{array}{rrr}
5 & -2 & 1 \\
-1 & 11 & -13 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-2 \\
6 \\
1
\end{array}\right]
$$

Systems of Linear Equations as Matrix Products

That is ...

$$
\left[\begin{array}{rrr}
5 & -2 & 1 \\
-1 & 11 & -13 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-2 \\
6 \\
1
\end{array}\right]
$$

is equivalent to

$$
A \mathbf{x}=\mathbf{b}
$$

where A is the coefficient matrix of the system, and

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-2 \\
6 \\
1
\end{array}\right]
$$

